cocos-engine-external/emscripten/physx/physx.debug.wasm.js

5057 lines
166 KiB
JavaScript

var PHYSX = (function() {
var _scriptDir = typeof document !== 'undefined' && document.currentScript ? document.currentScript.src : undefined;
return (
function(PHYSX) {
PHYSX = PHYSX || {};
/**
* @license
* Copyright 2010 The Emscripten Authors
* SPDX-License-Identifier: MIT
*/
// The Module object: Our interface to the outside world. We import
// and export values on it. There are various ways Module can be used:
// 1. Not defined. We create it here
// 2. A function parameter, function(Module) { ..generated code.. }
// 3. pre-run appended it, var Module = {}; ..generated code..
// 4. External script tag defines var Module.
// We need to check if Module already exists (e.g. case 3 above).
// Substitution will be replaced with actual code on later stage of the build,
// this way Closure Compiler will not mangle it (e.g. case 4. above).
// Note that if you want to run closure, and also to use Module
// after the generated code, you will need to define var Module = {};
// before the code. Then that object will be used in the code, and you
// can continue to use Module afterwards as well.
var Module = typeof PHYSX !== 'undefined' ? PHYSX : {};
// Set up the promise that indicates the Module is initialized
var readyPromiseResolve, readyPromiseReject;
Module['ready'] = new Promise(function(resolve, reject) {
readyPromiseResolve = resolve;
readyPromiseReject = reject;
});
// --pre-jses are emitted after the Module integration code, so that they can
// refer to Module (if they choose; they can also define Module)
// {{PRE_JSES}}
// Sometimes an existing Module object exists with properties
// meant to overwrite the default module functionality. Here
// we collect those properties and reapply _after_ we configure
// the current environment's defaults to avoid having to be so
// defensive during initialization.
var moduleOverrides = {};
var key;
for (key in Module) {
if (Module.hasOwnProperty(key)) {
moduleOverrides[key] = Module[key];
}
}
var arguments_ = [];
var thisProgram = './this.program';
var quit_ = function(status, toThrow) {
throw toThrow;
};
// Determine the runtime environment we are in. You can customize this by
// setting the ENVIRONMENT setting at compile time (see settings.js).
var ENVIRONMENT_IS_WEB = true;
var ENVIRONMENT_IS_WORKER = false;
var ENVIRONMENT_IS_NODE = false;
var ENVIRONMENT_IS_SHELL = false;
// `/` should be present at the end if `scriptDirectory` is not empty
var scriptDirectory = '';
function locateFile(path) {
if (Module['locateFile']) {
return Module['locateFile'](path, scriptDirectory);
}
return scriptDirectory + path;
}
// Hooks that are implemented differently in different runtime environments.
var read_,
readAsync,
readBinary,
setWindowTitle;
// Note that this includes Node.js workers when relevant (pthreads is enabled).
// Node.js workers are detected as a combination of ENVIRONMENT_IS_WORKER and
// ENVIRONMENT_IS_NODE.
if (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER) {
if (ENVIRONMENT_IS_WORKER) { // Check worker, not web, since window could be polyfilled
scriptDirectory = self.location.href;
} else if (document.currentScript) { // web
scriptDirectory = document.currentScript.src;
}
// When MODULARIZE, this JS may be executed later, after document.currentScript
// is gone, so we saved it, and we use it here instead of any other info.
if (_scriptDir) {
scriptDirectory = _scriptDir;
}
// blob urls look like blob:http://site.com/etc/etc and we cannot infer anything from them.
// otherwise, slice off the final part of the url to find the script directory.
// if scriptDirectory does not contain a slash, lastIndexOf will return -1,
// and scriptDirectory will correctly be replaced with an empty string.
if (scriptDirectory.indexOf('blob:') !== 0) {
scriptDirectory = scriptDirectory.substr(0, scriptDirectory.lastIndexOf('/')+1);
} else {
scriptDirectory = '';
}
// Differentiate the Web Worker from the Node Worker case, as reading must
// be done differently.
{
/**
* @license
* Copyright 2019 The Emscripten Authors
* SPDX-License-Identifier: MIT
*/
read_ = function shell_read(url) {
var xhr = new XMLHttpRequest();
xhr.open('GET', url, false);
xhr.send(null);
return xhr.responseText;
};
if (ENVIRONMENT_IS_WORKER) {
readBinary = function readBinary(url) {
var xhr = new XMLHttpRequest();
xhr.open('GET', url, false);
xhr.responseType = 'arraybuffer';
xhr.send(null);
return new Uint8Array(/** @type{!ArrayBuffer} */(xhr.response));
};
}
readAsync = function readAsync(url, onload, onerror) {
var xhr = new XMLHttpRequest();
xhr.open('GET', url, true);
xhr.responseType = 'arraybuffer';
xhr.onload = function xhr_onload() {
if (xhr.status == 200 || (xhr.status == 0 && xhr.response)) { // file URLs can return 0
onload(xhr.response);
return;
}
onerror();
};
xhr.onerror = onerror;
xhr.send(null);
};
}
setWindowTitle = function(title) { document.title = title };
} else
{
}
// Set up the out() and err() hooks, which are how we can print to stdout or
// stderr, respectively.
var out = Module['print'] || console.log.bind(console);
var err = Module['printErr'] || console.warn.bind(console);
// Merge back in the overrides
for (key in moduleOverrides) {
if (moduleOverrides.hasOwnProperty(key)) {
Module[key] = moduleOverrides[key];
}
}
// Free the object hierarchy contained in the overrides, this lets the GC
// reclaim data used e.g. in memoryInitializerRequest, which is a large typed array.
moduleOverrides = null;
// Emit code to handle expected values on the Module object. This applies Module.x
// to the proper local x. This has two benefits: first, we only emit it if it is
// expected to arrive, and second, by using a local everywhere else that can be
// minified.
if (Module['arguments']) arguments_ = Module['arguments'];
if (Module['thisProgram']) thisProgram = Module['thisProgram'];
if (Module['quit']) quit_ = Module['quit'];
// perform assertions in shell.js after we set up out() and err(), as otherwise if an assertion fails it cannot print the message
/**
* @license
* Copyright 2017 The Emscripten Authors
* SPDX-License-Identifier: MIT
*/
// {{PREAMBLE_ADDITIONS}}
var STACK_ALIGN = 16;
function dynamicAlloc(size) {
var ret = HEAP32[DYNAMICTOP_PTR>>2];
var end = (ret + size + 15) & -16;
HEAP32[DYNAMICTOP_PTR>>2] = end;
return ret;
}
function alignMemory(size, factor) {
if (!factor) factor = STACK_ALIGN; // stack alignment (16-byte) by default
return Math.ceil(size / factor) * factor;
}
function getNativeTypeSize(type) {
switch (type) {
case 'i1': case 'i8': return 1;
case 'i16': return 2;
case 'i32': return 4;
case 'i64': return 8;
case 'float': return 4;
case 'double': return 8;
default: {
if (type[type.length-1] === '*') {
return 4; // A pointer
} else if (type[0] === 'i') {
var bits = Number(type.substr(1));
assert(bits % 8 === 0, 'getNativeTypeSize invalid bits ' + bits + ', type ' + type);
return bits / 8;
} else {
return 0;
}
}
}
}
function warnOnce(text) {
if (!warnOnce.shown) warnOnce.shown = {};
if (!warnOnce.shown[text]) {
warnOnce.shown[text] = 1;
err(text);
}
}
/**
* @license
* Copyright 2020 The Emscripten Authors
* SPDX-License-Identifier: MIT
*/
// Wraps a JS function as a wasm function with a given signature.
function convertJsFunctionToWasm(func, sig) {
// If the type reflection proposal is available, use the new
// "WebAssembly.Function" constructor.
// Otherwise, construct a minimal wasm module importing the JS function and
// re-exporting it.
if (typeof WebAssembly.Function === "function") {
var typeNames = {
'i': 'i32',
'j': 'i64',
'f': 'f32',
'd': 'f64'
};
var type = {
parameters: [],
results: sig[0] == 'v' ? [] : [typeNames[sig[0]]]
};
for (var i = 1; i < sig.length; ++i) {
type.parameters.push(typeNames[sig[i]]);
}
return new WebAssembly.Function(type, func);
}
// The module is static, with the exception of the type section, which is
// generated based on the signature passed in.
var typeSection = [
0x01, // id: section,
0x00, // length: 0 (placeholder)
0x01, // count: 1
0x60, // form: func
];
var sigRet = sig.slice(0, 1);
var sigParam = sig.slice(1);
var typeCodes = {
'i': 0x7f, // i32
'j': 0x7e, // i64
'f': 0x7d, // f32
'd': 0x7c, // f64
};
// Parameters, length + signatures
typeSection.push(sigParam.length);
for (var i = 0; i < sigParam.length; ++i) {
typeSection.push(typeCodes[sigParam[i]]);
}
// Return values, length + signatures
// With no multi-return in MVP, either 0 (void) or 1 (anything else)
if (sigRet == 'v') {
typeSection.push(0x00);
} else {
typeSection = typeSection.concat([0x01, typeCodes[sigRet]]);
}
// Write the overall length of the type section back into the section header
// (excepting the 2 bytes for the section id and length)
typeSection[1] = typeSection.length - 2;
// Rest of the module is static
var bytes = new Uint8Array([
0x00, 0x61, 0x73, 0x6d, // magic ("\0asm")
0x01, 0x00, 0x00, 0x00, // version: 1
].concat(typeSection, [
0x02, 0x07, // import section
// (import "e" "f" (func 0 (type 0)))
0x01, 0x01, 0x65, 0x01, 0x66, 0x00, 0x00,
0x07, 0x05, // export section
// (export "f" (func 0 (type 0)))
0x01, 0x01, 0x66, 0x00, 0x00,
]));
// We can compile this wasm module synchronously because it is very small.
// This accepts an import (at "e.f"), that it reroutes to an export (at "f")
var module = new WebAssembly.Module(bytes);
var instance = new WebAssembly.Instance(module, {
'e': {
'f': func
}
});
var wrappedFunc = instance.exports['f'];
return wrappedFunc;
}
var freeTableIndexes = [];
// Weak map of functions in the table to their indexes, created on first use.
var functionsInTableMap;
// Add a wasm function to the table.
function addFunctionWasm(func, sig) {
var table = wasmTable;
// Check if the function is already in the table, to ensure each function
// gets a unique index. First, create the map if this is the first use.
if (!functionsInTableMap) {
functionsInTableMap = new WeakMap();
for (var i = 0; i < table.length; i++) {
var item = table.get(i);
// Ignore null values.
if (item) {
functionsInTableMap.set(item, i);
}
}
}
if (functionsInTableMap.has(func)) {
return functionsInTableMap.get(func);
}
// It's not in the table, add it now.
var ret;
// Reuse a free index if there is one, otherwise grow.
if (freeTableIndexes.length) {
ret = freeTableIndexes.pop();
} else {
ret = table.length;
// Grow the table
try {
table.grow(1);
} catch (err) {
if (!(err instanceof RangeError)) {
throw err;
}
throw 'Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.';
}
}
// Set the new value.
try {
// Attempting to call this with JS function will cause of table.set() to fail
table.set(ret, func);
} catch (err) {
if (!(err instanceof TypeError)) {
throw err;
}
var wrapped = convertJsFunctionToWasm(func, sig);
table.set(ret, wrapped);
}
functionsInTableMap.set(func, ret);
return ret;
}
function removeFunctionWasm(index) {
functionsInTableMap.delete(wasmTable.get(index));
freeTableIndexes.push(index);
}
// 'sig' parameter is required for the llvm backend but only when func is not
// already a WebAssembly function.
function addFunction(func, sig) {
return addFunctionWasm(func, sig);
}
function removeFunction(index) {
removeFunctionWasm(index);
}
var funcWrappers = {};
function getFuncWrapper(func, sig) {
if (!func) return; // on null pointer, return undefined
assert(sig);
if (!funcWrappers[sig]) {
funcWrappers[sig] = {};
}
var sigCache = funcWrappers[sig];
if (!sigCache[func]) {
// optimize away arguments usage in common cases
if (sig.length === 1) {
sigCache[func] = function dynCall_wrapper() {
return dynCall(sig, func);
};
} else if (sig.length === 2) {
sigCache[func] = function dynCall_wrapper(arg) {
return dynCall(sig, func, [arg]);
};
} else {
// general case
sigCache[func] = function dynCall_wrapper() {
return dynCall(sig, func, Array.prototype.slice.call(arguments));
};
}
}
return sigCache[func];
}
/**
* @license
* Copyright 2020 The Emscripten Authors
* SPDX-License-Identifier: MIT
*/
function makeBigInt(low, high, unsigned) {
return unsigned ? ((+((low>>>0)))+((+((high>>>0)))*4294967296.0)) : ((+((low>>>0)))+((+((high|0)))*4294967296.0));
}
/** @param {Array=} args */
function dynCall(sig, ptr, args) {
if (args && args.length) {
return Module['dynCall_' + sig].apply(null, [ptr].concat(args));
} else {
return Module['dynCall_' + sig].call(null, ptr);
}
}
var tempRet0 = 0;
var setTempRet0 = function(value) {
tempRet0 = value;
};
var getTempRet0 = function() {
return tempRet0;
};
// The address globals begin at. Very low in memory, for code size and optimization opportunities.
// Above 0 is static memory, starting with globals.
// Then the stack.
// Then 'dynamic' memory for sbrk.
var GLOBAL_BASE = 1024;
/**
* @license
* Copyright 2010 The Emscripten Authors
* SPDX-License-Identifier: MIT
*/
// === Preamble library stuff ===
// Documentation for the public APIs defined in this file must be updated in:
// site/source/docs/api_reference/preamble.js.rst
// A prebuilt local version of the documentation is available at:
// site/build/text/docs/api_reference/preamble.js.txt
// You can also build docs locally as HTML or other formats in site/
// An online HTML version (which may be of a different version of Emscripten)
// is up at http://kripken.github.io/emscripten-site/docs/api_reference/preamble.js.html
var wasmBinary;if (Module['wasmBinary']) wasmBinary = Module['wasmBinary'];
var noExitRuntime;if (Module['noExitRuntime']) noExitRuntime = Module['noExitRuntime'];
if (typeof WebAssembly !== 'object') {
err('no native wasm support detected');
}
/**
* @license
* Copyright 2019 The Emscripten Authors
* SPDX-License-Identifier: MIT
*/
// In MINIMAL_RUNTIME, setValue() and getValue() are only available when building with safe heap enabled, for heap safety checking.
// In traditional runtime, setValue() and getValue() are always available (although their use is highly discouraged due to perf penalties)
/** @param {number} ptr
@param {number} value
@param {string} type
@param {number|boolean=} noSafe */
function setValue(ptr, value, type, noSafe) {
type = type || 'i8';
if (type.charAt(type.length-1) === '*') type = 'i32'; // pointers are 32-bit
switch(type) {
case 'i1': HEAP8[((ptr)>>0)]=value; break;
case 'i8': HEAP8[((ptr)>>0)]=value; break;
case 'i16': HEAP16[((ptr)>>1)]=value; break;
case 'i32': HEAP32[((ptr)>>2)]=value; break;
case 'i64': (tempI64 = [value>>>0,(tempDouble=value,(+(Math_abs(tempDouble))) >= 1.0 ? (tempDouble > 0.0 ? ((Math_min((+(Math_floor((tempDouble)/4294967296.0))), 4294967295.0))|0)>>>0 : (~~((+(Math_ceil((tempDouble - +(((~~(tempDouble)))>>>0))/4294967296.0)))))>>>0) : 0)],HEAP32[((ptr)>>2)]=tempI64[0],HEAP32[(((ptr)+(4))>>2)]=tempI64[1]); break;
case 'float': HEAPF32[((ptr)>>2)]=value; break;
case 'double': HEAPF64[((ptr)>>3)]=value; break;
default: abort('invalid type for setValue: ' + type);
}
}
/** @param {number} ptr
@param {string} type
@param {number|boolean=} noSafe */
function getValue(ptr, type, noSafe) {
type = type || 'i8';
if (type.charAt(type.length-1) === '*') type = 'i32'; // pointers are 32-bit
switch(type) {
case 'i1': return HEAP8[((ptr)>>0)];
case 'i8': return HEAP8[((ptr)>>0)];
case 'i16': return HEAP16[((ptr)>>1)];
case 'i32': return HEAP32[((ptr)>>2)];
case 'i64': return HEAP32[((ptr)>>2)];
case 'float': return HEAPF32[((ptr)>>2)];
case 'double': return HEAPF64[((ptr)>>3)];
default: abort('invalid type for getValue: ' + type);
}
return null;
}
// Wasm globals
var wasmMemory;
// In fastcomp asm.js, we don't need a wasm Table at all.
// In the wasm backend, we polyfill the WebAssembly object,
// so this creates a (non-native-wasm) table for us.
var wasmTable = new WebAssembly.Table({
'initial': 5439,
'maximum': 5439 + 0,
'element': 'anyfunc'
});
//========================================
// Runtime essentials
//========================================
// whether we are quitting the application. no code should run after this.
// set in exit() and abort()
var ABORT = false;
// set by exit() and abort(). Passed to 'onExit' handler.
// NOTE: This is also used as the process return code code in shell environments
// but only when noExitRuntime is false.
var EXITSTATUS = 0;
/** @type {function(*, string=)} */
function assert(condition, text) {
if (!condition) {
abort('Assertion failed: ' + text);
}
}
// Returns the C function with a specified identifier (for C++, you need to do manual name mangling)
function getCFunc(ident) {
var func = Module['_' + ident]; // closure exported function
assert(func, 'Cannot call unknown function ' + ident + ', make sure it is exported');
return func;
}
// C calling interface.
/** @param {string|null=} returnType
@param {Array=} argTypes
@param {Arguments|Array=} args
@param {Object=} opts */
function ccall(ident, returnType, argTypes, args, opts) {
// For fast lookup of conversion functions
var toC = {
'string': function(str) {
var ret = 0;
if (str !== null && str !== undefined && str !== 0) { // null string
// at most 4 bytes per UTF-8 code point, +1 for the trailing '\0'
var len = (str.length << 2) + 1;
ret = stackAlloc(len);
stringToUTF8(str, ret, len);
}
return ret;
},
'array': function(arr) {
var ret = stackAlloc(arr.length);
writeArrayToMemory(arr, ret);
return ret;
}
};
function convertReturnValue(ret) {
if (returnType === 'string') return UTF8ToString(ret);
if (returnType === 'boolean') return Boolean(ret);
return ret;
}
var func = getCFunc(ident);
var cArgs = [];
var stack = 0;
if (args) {
for (var i = 0; i < args.length; i++) {
var converter = toC[argTypes[i]];
if (converter) {
if (stack === 0) stack = stackSave();
cArgs[i] = converter(args[i]);
} else {
cArgs[i] = args[i];
}
}
}
var ret = func.apply(null, cArgs);
ret = convertReturnValue(ret);
if (stack !== 0) stackRestore(stack);
return ret;
}
/** @param {string=} returnType
@param {Array=} argTypes
@param {Object=} opts */
function cwrap(ident, returnType, argTypes, opts) {
argTypes = argTypes || [];
// When the function takes numbers and returns a number, we can just return
// the original function
var numericArgs = argTypes.every(function(type){ return type === 'number'});
var numericRet = returnType !== 'string';
if (numericRet && numericArgs && !opts) {
return getCFunc(ident);
}
return function() {
return ccall(ident, returnType, argTypes, arguments, opts);
}
}
var ALLOC_NORMAL = 0; // Tries to use _malloc()
var ALLOC_STACK = 1; // Lives for the duration of the current function call
var ALLOC_DYNAMIC = 2; // Cannot be freed except through sbrk
var ALLOC_NONE = 3; // Do not allocate
// allocate(): This is for internal use. You can use it yourself as well, but the interface
// is a little tricky (see docs right below). The reason is that it is optimized
// for multiple syntaxes to save space in generated code. So you should
// normally not use allocate(), and instead allocate memory using _malloc(),
// initialize it with setValue(), and so forth.
// @slab: An array of data, or a number. If a number, then the size of the block to allocate,
// in *bytes* (note that this is sometimes confusing: the next parameter does not
// affect this!)
// @types: Either an array of types, one for each byte (or 0 if no type at that position),
// or a single type which is used for the entire block. This only matters if there
// is initial data - if @slab is a number, then this does not matter at all and is
// ignored.
// @allocator: How to allocate memory, see ALLOC_*
/** @type {function((TypedArray|Array<number>|number), string, number, number=)} */
function allocate(slab, types, allocator, ptr) {
var zeroinit, size;
if (typeof slab === 'number') {
zeroinit = true;
size = slab;
} else {
zeroinit = false;
size = slab.length;
}
var singleType = typeof types === 'string' ? types : null;
var ret;
if (allocator == ALLOC_NONE) {
ret = ptr;
} else {
ret = [_malloc,
stackAlloc,
dynamicAlloc][allocator](Math.max(size, singleType ? 1 : types.length));
}
if (zeroinit) {
var stop;
ptr = ret;
assert((ret & 3) == 0);
stop = ret + (size & ~3);
for (; ptr < stop; ptr += 4) {
HEAP32[((ptr)>>2)]=0;
}
stop = ret + size;
while (ptr < stop) {
HEAP8[((ptr++)>>0)]=0;
}
return ret;
}
if (singleType === 'i8') {
if (slab.subarray || slab.slice) {
HEAPU8.set(/** @type {!Uint8Array} */ (slab), ret);
} else {
HEAPU8.set(new Uint8Array(slab), ret);
}
return ret;
}
var i = 0, type, typeSize, previousType;
while (i < size) {
var curr = slab[i];
type = singleType || types[i];
if (type === 0) {
i++;
continue;
}
if (type == 'i64') type = 'i32'; // special case: we have one i32 here, and one i32 later
setValue(ret+i, curr, type);
// no need to look up size unless type changes, so cache it
if (previousType !== type) {
typeSize = getNativeTypeSize(type);
previousType = type;
}
i += typeSize;
}
return ret;
}
// Allocate memory during any stage of startup - static memory early on, dynamic memory later, malloc when ready
function getMemory(size) {
if (!runtimeInitialized) return dynamicAlloc(size);
return _malloc(size);
}
/**
* @license
* Copyright 2019 The Emscripten Authors
* SPDX-License-Identifier: MIT
*/
// runtime_strings.js: Strings related runtime functions that are part of both MINIMAL_RUNTIME and regular runtime.
// Given a pointer 'ptr' to a null-terminated UTF8-encoded string in the given array that contains uint8 values, returns
// a copy of that string as a Javascript String object.
var UTF8Decoder = typeof TextDecoder !== 'undefined' ? new TextDecoder('utf8') : undefined;
/**
* @param {number} idx
* @param {number=} maxBytesToRead
* @return {string}
*/
function UTF8ArrayToString(heap, idx, maxBytesToRead) {
var endIdx = idx + maxBytesToRead;
var endPtr = idx;
// TextDecoder needs to know the byte length in advance, it doesn't stop on null terminator by itself.
// Also, use the length info to avoid running tiny strings through TextDecoder, since .subarray() allocates garbage.
// (As a tiny code save trick, compare endPtr against endIdx using a negation, so that undefined means Infinity)
while (heap[endPtr] && !(endPtr >= endIdx)) ++endPtr;
if (endPtr - idx > 16 && heap.subarray && UTF8Decoder) {
return UTF8Decoder.decode(heap.subarray(idx, endPtr));
} else {
var str = '';
// If building with TextDecoder, we have already computed the string length above, so test loop end condition against that
while (idx < endPtr) {
// For UTF8 byte structure, see:
// http://en.wikipedia.org/wiki/UTF-8#Description
// https://www.ietf.org/rfc/rfc2279.txt
// https://tools.ietf.org/html/rfc3629
var u0 = heap[idx++];
if (!(u0 & 0x80)) { str += String.fromCharCode(u0); continue; }
var u1 = heap[idx++] & 63;
if ((u0 & 0xE0) == 0xC0) { str += String.fromCharCode(((u0 & 31) << 6) | u1); continue; }
var u2 = heap[idx++] & 63;
if ((u0 & 0xF0) == 0xE0) {
u0 = ((u0 & 15) << 12) | (u1 << 6) | u2;
} else {
u0 = ((u0 & 7) << 18) | (u1 << 12) | (u2 << 6) | (heap[idx++] & 63);
}
if (u0 < 0x10000) {
str += String.fromCharCode(u0);
} else {
var ch = u0 - 0x10000;
str += String.fromCharCode(0xD800 | (ch >> 10), 0xDC00 | (ch & 0x3FF));
}
}
}
return str;
}
// Given a pointer 'ptr' to a null-terminated UTF8-encoded string in the emscripten HEAP, returns a
// copy of that string as a Javascript String object.
// maxBytesToRead: an optional length that specifies the maximum number of bytes to read. You can omit
// this parameter to scan the string until the first \0 byte. If maxBytesToRead is
// passed, and the string at [ptr, ptr+maxBytesToReadr[ contains a null byte in the
// middle, then the string will cut short at that byte index (i.e. maxBytesToRead will
// not produce a string of exact length [ptr, ptr+maxBytesToRead[)
// N.B. mixing frequent uses of UTF8ToString() with and without maxBytesToRead may
// throw JS JIT optimizations off, so it is worth to consider consistently using one
// style or the other.
/**
* @param {number} ptr
* @param {number=} maxBytesToRead
* @return {string}
*/
function UTF8ToString(ptr, maxBytesToRead) {
return ptr ? UTF8ArrayToString(HEAPU8, ptr, maxBytesToRead) : '';
}
// Copies the given Javascript String object 'str' to the given byte array at address 'outIdx',
// encoded in UTF8 form and null-terminated. The copy will require at most str.length*4+1 bytes of space in the HEAP.
// Use the function lengthBytesUTF8 to compute the exact number of bytes (excluding null terminator) that this function will write.
// Parameters:
// str: the Javascript string to copy.
// heap: the array to copy to. Each index in this array is assumed to be one 8-byte element.
// outIdx: The starting offset in the array to begin the copying.
// maxBytesToWrite: The maximum number of bytes this function can write to the array.
// This count should include the null terminator,
// i.e. if maxBytesToWrite=1, only the null terminator will be written and nothing else.
// maxBytesToWrite=0 does not write any bytes to the output, not even the null terminator.
// Returns the number of bytes written, EXCLUDING the null terminator.
function stringToUTF8Array(str, heap, outIdx, maxBytesToWrite) {
if (!(maxBytesToWrite > 0)) // Parameter maxBytesToWrite is not optional. Negative values, 0, null, undefined and false each don't write out any bytes.
return 0;
var startIdx = outIdx;
var endIdx = outIdx + maxBytesToWrite - 1; // -1 for string null terminator.
for (var i = 0; i < str.length; ++i) {
// Gotcha: charCodeAt returns a 16-bit word that is a UTF-16 encoded code unit, not a Unicode code point of the character! So decode UTF16->UTF32->UTF8.
// See http://unicode.org/faq/utf_bom.html#utf16-3
// For UTF8 byte structure, see http://en.wikipedia.org/wiki/UTF-8#Description and https://www.ietf.org/rfc/rfc2279.txt and https://tools.ietf.org/html/rfc3629
var u = str.charCodeAt(i); // possibly a lead surrogate
if (u >= 0xD800 && u <= 0xDFFF) {
var u1 = str.charCodeAt(++i);
u = 0x10000 + ((u & 0x3FF) << 10) | (u1 & 0x3FF);
}
if (u <= 0x7F) {
if (outIdx >= endIdx) break;
heap[outIdx++] = u;
} else if (u <= 0x7FF) {
if (outIdx + 1 >= endIdx) break;
heap[outIdx++] = 0xC0 | (u >> 6);
heap[outIdx++] = 0x80 | (u & 63);
} else if (u <= 0xFFFF) {
if (outIdx + 2 >= endIdx) break;
heap[outIdx++] = 0xE0 | (u >> 12);
heap[outIdx++] = 0x80 | ((u >> 6) & 63);
heap[outIdx++] = 0x80 | (u & 63);
} else {
if (outIdx + 3 >= endIdx) break;
heap[outIdx++] = 0xF0 | (u >> 18);
heap[outIdx++] = 0x80 | ((u >> 12) & 63);
heap[outIdx++] = 0x80 | ((u >> 6) & 63);
heap[outIdx++] = 0x80 | (u & 63);
}
}
// Null-terminate the pointer to the buffer.
heap[outIdx] = 0;
return outIdx - startIdx;
}
// Copies the given Javascript String object 'str' to the emscripten HEAP at address 'outPtr',
// null-terminated and encoded in UTF8 form. The copy will require at most str.length*4+1 bytes of space in the HEAP.
// Use the function lengthBytesUTF8 to compute the exact number of bytes (excluding null terminator) that this function will write.
// Returns the number of bytes written, EXCLUDING the null terminator.
function stringToUTF8(str, outPtr, maxBytesToWrite) {
return stringToUTF8Array(str, HEAPU8,outPtr, maxBytesToWrite);
}
// Returns the number of bytes the given Javascript string takes if encoded as a UTF8 byte array, EXCLUDING the null terminator byte.
function lengthBytesUTF8(str) {
var len = 0;
for (var i = 0; i < str.length; ++i) {
// Gotcha: charCodeAt returns a 16-bit word that is a UTF-16 encoded code unit, not a Unicode code point of the character! So decode UTF16->UTF32->UTF8.
// See http://unicode.org/faq/utf_bom.html#utf16-3
var u = str.charCodeAt(i); // possibly a lead surrogate
if (u >= 0xD800 && u <= 0xDFFF) u = 0x10000 + ((u & 0x3FF) << 10) | (str.charCodeAt(++i) & 0x3FF);
if (u <= 0x7F) ++len;
else if (u <= 0x7FF) len += 2;
else if (u <= 0xFFFF) len += 3;
else len += 4;
}
return len;
}
/**
* @license
* Copyright 2020 The Emscripten Authors
* SPDX-License-Identifier: MIT
*/
// runtime_strings_extra.js: Strings related runtime functions that are available only in regular runtime.
// Given a pointer 'ptr' to a null-terminated ASCII-encoded string in the emscripten HEAP, returns
// a copy of that string as a Javascript String object.
function AsciiToString(ptr) {
var str = '';
while (1) {
var ch = HEAPU8[((ptr++)>>0)];
if (!ch) return str;
str += String.fromCharCode(ch);
}
}
// Copies the given Javascript String object 'str' to the emscripten HEAP at address 'outPtr',
// null-terminated and encoded in ASCII form. The copy will require at most str.length+1 bytes of space in the HEAP.
function stringToAscii(str, outPtr) {
return writeAsciiToMemory(str, outPtr, false);
}
// Given a pointer 'ptr' to a null-terminated UTF16LE-encoded string in the emscripten HEAP, returns
// a copy of that string as a Javascript String object.
var UTF16Decoder = typeof TextDecoder !== 'undefined' ? new TextDecoder('utf-16le') : undefined;
function UTF16ToString(ptr, maxBytesToRead) {
var endPtr = ptr;
// TextDecoder needs to know the byte length in advance, it doesn't stop on null terminator by itself.
// Also, use the length info to avoid running tiny strings through TextDecoder, since .subarray() allocates garbage.
var idx = endPtr >> 1;
var maxIdx = idx + maxBytesToRead / 2;
// If maxBytesToRead is not passed explicitly, it will be undefined, and this
// will always evaluate to true. This saves on code size.
while (!(idx >= maxIdx) && HEAPU16[idx]) ++idx;
endPtr = idx << 1;
if (endPtr - ptr > 32 && UTF16Decoder) {
return UTF16Decoder.decode(HEAPU8.subarray(ptr, endPtr));
} else {
var i = 0;
var str = '';
while (1) {
var codeUnit = HEAP16[(((ptr)+(i*2))>>1)];
if (codeUnit == 0 || i == maxBytesToRead / 2) return str;
++i;
// fromCharCode constructs a character from a UTF-16 code unit, so we can pass the UTF16 string right through.
str += String.fromCharCode(codeUnit);
}
}
}
// Copies the given Javascript String object 'str' to the emscripten HEAP at address 'outPtr',
// null-terminated and encoded in UTF16 form. The copy will require at most str.length*4+2 bytes of space in the HEAP.
// Use the function lengthBytesUTF16() to compute the exact number of bytes (excluding null terminator) that this function will write.
// Parameters:
// str: the Javascript string to copy.
// outPtr: Byte address in Emscripten HEAP where to write the string to.
// maxBytesToWrite: The maximum number of bytes this function can write to the array. This count should include the null
// terminator, i.e. if maxBytesToWrite=2, only the null terminator will be written and nothing else.
// maxBytesToWrite<2 does not write any bytes to the output, not even the null terminator.
// Returns the number of bytes written, EXCLUDING the null terminator.
function stringToUTF16(str, outPtr, maxBytesToWrite) {
// Backwards compatibility: if max bytes is not specified, assume unsafe unbounded write is allowed.
if (maxBytesToWrite === undefined) {
maxBytesToWrite = 0x7FFFFFFF;
}
if (maxBytesToWrite < 2) return 0;
maxBytesToWrite -= 2; // Null terminator.
var startPtr = outPtr;
var numCharsToWrite = (maxBytesToWrite < str.length*2) ? (maxBytesToWrite / 2) : str.length;
for (var i = 0; i < numCharsToWrite; ++i) {
// charCodeAt returns a UTF-16 encoded code unit, so it can be directly written to the HEAP.
var codeUnit = str.charCodeAt(i); // possibly a lead surrogate
HEAP16[((outPtr)>>1)]=codeUnit;
outPtr += 2;
}
// Null-terminate the pointer to the HEAP.
HEAP16[((outPtr)>>1)]=0;
return outPtr - startPtr;
}
// Returns the number of bytes the given Javascript string takes if encoded as a UTF16 byte array, EXCLUDING the null terminator byte.
function lengthBytesUTF16(str) {
return str.length*2;
}
function UTF32ToString(ptr, maxBytesToRead) {
var i = 0;
var str = '';
// If maxBytesToRead is not passed explicitly, it will be undefined, and this
// will always evaluate to true. This saves on code size.
while (!(i >= maxBytesToRead / 4)) {
var utf32 = HEAP32[(((ptr)+(i*4))>>2)];
if (utf32 == 0) break;
++i;
// Gotcha: fromCharCode constructs a character from a UTF-16 encoded code (pair), not from a Unicode code point! So encode the code point to UTF-16 for constructing.
// See http://unicode.org/faq/utf_bom.html#utf16-3
if (utf32 >= 0x10000) {
var ch = utf32 - 0x10000;
str += String.fromCharCode(0xD800 | (ch >> 10), 0xDC00 | (ch & 0x3FF));
} else {
str += String.fromCharCode(utf32);
}
}
return str;
}
// Copies the given Javascript String object 'str' to the emscripten HEAP at address 'outPtr',
// null-terminated and encoded in UTF32 form. The copy will require at most str.length*4+4 bytes of space in the HEAP.
// Use the function lengthBytesUTF32() to compute the exact number of bytes (excluding null terminator) that this function will write.
// Parameters:
// str: the Javascript string to copy.
// outPtr: Byte address in Emscripten HEAP where to write the string to.
// maxBytesToWrite: The maximum number of bytes this function can write to the array. This count should include the null
// terminator, i.e. if maxBytesToWrite=4, only the null terminator will be written and nothing else.
// maxBytesToWrite<4 does not write any bytes to the output, not even the null terminator.
// Returns the number of bytes written, EXCLUDING the null terminator.
function stringToUTF32(str, outPtr, maxBytesToWrite) {
// Backwards compatibility: if max bytes is not specified, assume unsafe unbounded write is allowed.
if (maxBytesToWrite === undefined) {
maxBytesToWrite = 0x7FFFFFFF;
}
if (maxBytesToWrite < 4) return 0;
var startPtr = outPtr;
var endPtr = startPtr + maxBytesToWrite - 4;
for (var i = 0; i < str.length; ++i) {
// Gotcha: charCodeAt returns a 16-bit word that is a UTF-16 encoded code unit, not a Unicode code point of the character! We must decode the string to UTF-32 to the heap.
// See http://unicode.org/faq/utf_bom.html#utf16-3
var codeUnit = str.charCodeAt(i); // possibly a lead surrogate
if (codeUnit >= 0xD800 && codeUnit <= 0xDFFF) {
var trailSurrogate = str.charCodeAt(++i);
codeUnit = 0x10000 + ((codeUnit & 0x3FF) << 10) | (trailSurrogate & 0x3FF);
}
HEAP32[((outPtr)>>2)]=codeUnit;
outPtr += 4;
if (outPtr + 4 > endPtr) break;
}
// Null-terminate the pointer to the HEAP.
HEAP32[((outPtr)>>2)]=0;
return outPtr - startPtr;
}
// Returns the number of bytes the given Javascript string takes if encoded as a UTF16 byte array, EXCLUDING the null terminator byte.
function lengthBytesUTF32(str) {
var len = 0;
for (var i = 0; i < str.length; ++i) {
// Gotcha: charCodeAt returns a 16-bit word that is a UTF-16 encoded code unit, not a Unicode code point of the character! We must decode the string to UTF-32 to the heap.
// See http://unicode.org/faq/utf_bom.html#utf16-3
var codeUnit = str.charCodeAt(i);
if (codeUnit >= 0xD800 && codeUnit <= 0xDFFF) ++i; // possibly a lead surrogate, so skip over the tail surrogate.
len += 4;
}
return len;
}
// Allocate heap space for a JS string, and write it there.
// It is the responsibility of the caller to free() that memory.
function allocateUTF8(str) {
var size = lengthBytesUTF8(str) + 1;
var ret = _malloc(size);
if (ret) stringToUTF8Array(str, HEAP8, ret, size);
return ret;
}
// Allocate stack space for a JS string, and write it there.
function allocateUTF8OnStack(str) {
var size = lengthBytesUTF8(str) + 1;
var ret = stackAlloc(size);
stringToUTF8Array(str, HEAP8, ret, size);
return ret;
}
// Deprecated: This function should not be called because it is unsafe and does not provide
// a maximum length limit of how many bytes it is allowed to write. Prefer calling the
// function stringToUTF8Array() instead, which takes in a maximum length that can be used
// to be secure from out of bounds writes.
/** @deprecated
@param {boolean=} dontAddNull */
function writeStringToMemory(string, buffer, dontAddNull) {
warnOnce('writeStringToMemory is deprecated and should not be called! Use stringToUTF8() instead!');
var /** @type {number} */ lastChar, /** @type {number} */ end;
if (dontAddNull) {
// stringToUTF8Array always appends null. If we don't want to do that, remember the
// character that existed at the location where the null will be placed, and restore
// that after the write (below).
end = buffer + lengthBytesUTF8(string);
lastChar = HEAP8[end];
}
stringToUTF8(string, buffer, Infinity);
if (dontAddNull) HEAP8[end] = lastChar; // Restore the value under the null character.
}
function writeArrayToMemory(array, buffer) {
HEAP8.set(array, buffer);
}
/** @param {boolean=} dontAddNull */
function writeAsciiToMemory(str, buffer, dontAddNull) {
for (var i = 0; i < str.length; ++i) {
HEAP8[((buffer++)>>0)]=str.charCodeAt(i);
}
// Null-terminate the pointer to the HEAP.
if (!dontAddNull) HEAP8[((buffer)>>0)]=0;
}
// Memory management
var PAGE_SIZE = 16384;
var WASM_PAGE_SIZE = 65536;
var ASMJS_PAGE_SIZE = 16777216;
function alignUp(x, multiple) {
if (x % multiple > 0) {
x += multiple - (x % multiple);
}
return x;
}
var HEAP,
/** @type {ArrayBuffer} */
buffer,
/** @type {Int8Array} */
HEAP8,
/** @type {Uint8Array} */
HEAPU8,
/** @type {Int16Array} */
HEAP16,
/** @type {Uint16Array} */
HEAPU16,
/** @type {Int32Array} */
HEAP32,
/** @type {Uint32Array} */
HEAPU32,
/** @type {Float32Array} */
HEAPF32,
/** @type {Float64Array} */
HEAPF64;
function updateGlobalBufferAndViews(buf) {
buffer = buf;
Module['HEAP8'] = HEAP8 = new Int8Array(buf);
Module['HEAP16'] = HEAP16 = new Int16Array(buf);
Module['HEAP32'] = HEAP32 = new Int32Array(buf);
Module['HEAPU8'] = HEAPU8 = new Uint8Array(buf);
Module['HEAPU16'] = HEAPU16 = new Uint16Array(buf);
Module['HEAPU32'] = HEAPU32 = new Uint32Array(buf);
Module['HEAPF32'] = HEAPF32 = new Float32Array(buf);
Module['HEAPF64'] = HEAPF64 = new Float64Array(buf);
}
var STATIC_BASE = 1024,
STACK_BASE = 5618720,
STACKTOP = STACK_BASE,
STACK_MAX = 375840,
DYNAMIC_BASE = 5618720,
DYNAMICTOP_PTR = 375680;
var TOTAL_STACK = 5242880;
var INITIAL_INITIAL_MEMORY = Module['INITIAL_MEMORY'] || 16777216;
/**
* @license
* Copyright 2019 The Emscripten Authors
* SPDX-License-Identifier: MIT
*/
// In standalone mode, the wasm creates the memory, and the user can't provide it.
// In non-standalone/normal mode, we create the memory here.
/**
* @license
* Copyright 2019 The Emscripten Authors
* SPDX-License-Identifier: MIT
*/
// Create the main memory. (Note: this isn't used in STANDALONE_WASM mode since the wasm
// memory is created in the wasm, not in JS.)
if (Module['wasmMemory']) {
wasmMemory = Module['wasmMemory'];
} else
{
wasmMemory = new WebAssembly.Memory({
'initial': INITIAL_INITIAL_MEMORY / WASM_PAGE_SIZE
,
'maximum': 2147483648 / WASM_PAGE_SIZE
});
}
if (wasmMemory) {
buffer = wasmMemory.buffer;
}
// If the user provides an incorrect length, just use that length instead rather than providing the user to
// specifically provide the memory length with Module['INITIAL_MEMORY'].
INITIAL_INITIAL_MEMORY = buffer.byteLength;
updateGlobalBufferAndViews(buffer);
HEAP32[DYNAMICTOP_PTR>>2] = DYNAMIC_BASE;
/**
* @license
* Copyright 2019 The Emscripten Authors
* SPDX-License-Identifier: MIT
*/
/**
* @license
* Copyright 2019 The Emscripten Authors
* SPDX-License-Identifier: MIT
*/
function callRuntimeCallbacks(callbacks) {
while(callbacks.length > 0) {
var callback = callbacks.shift();
if (typeof callback == 'function') {
callback(Module); // Pass the module as the first argument.
continue;
}
var func = callback.func;
if (typeof func === 'number') {
if (callback.arg === undefined) {
Module['dynCall_v'](func);
} else {
Module['dynCall_vi'](func, callback.arg);
}
} else {
func(callback.arg === undefined ? null : callback.arg);
}
}
}
var __ATPRERUN__ = []; // functions called before the runtime is initialized
var __ATINIT__ = []; // functions called during startup
var __ATMAIN__ = []; // functions called when main() is to be run
var __ATEXIT__ = []; // functions called during shutdown
var __ATPOSTRUN__ = []; // functions called after the main() is called
var runtimeInitialized = false;
var runtimeExited = false;
function preRun() {
if (Module['preRun']) {
if (typeof Module['preRun'] == 'function') Module['preRun'] = [Module['preRun']];
while (Module['preRun'].length) {
addOnPreRun(Module['preRun'].shift());
}
}
callRuntimeCallbacks(__ATPRERUN__);
}
function initRuntime() {
runtimeInitialized = true;
callRuntimeCallbacks(__ATINIT__);
}
function preMain() {
callRuntimeCallbacks(__ATMAIN__);
}
function exitRuntime() {
runtimeExited = true;
}
function postRun() {
if (Module['postRun']) {
if (typeof Module['postRun'] == 'function') Module['postRun'] = [Module['postRun']];
while (Module['postRun'].length) {
addOnPostRun(Module['postRun'].shift());
}
}
callRuntimeCallbacks(__ATPOSTRUN__);
}
function addOnPreRun(cb) {
__ATPRERUN__.unshift(cb);
}
function addOnInit(cb) {
__ATINIT__.unshift(cb);
}
function addOnPreMain(cb) {
__ATMAIN__.unshift(cb);
}
function addOnExit(cb) {
}
function addOnPostRun(cb) {
__ATPOSTRUN__.unshift(cb);
}
/** @param {number|boolean=} ignore */
function unSign(value, bits, ignore) {
if (value >= 0) {
return value;
}
return bits <= 32 ? 2*Math.abs(1 << (bits-1)) + value // Need some trickery, since if bits == 32, we are right at the limit of the bits JS uses in bitshifts
: Math.pow(2, bits) + value;
}
/** @param {number|boolean=} ignore */
function reSign(value, bits, ignore) {
if (value <= 0) {
return value;
}
var half = bits <= 32 ? Math.abs(1 << (bits-1)) // abs is needed if bits == 32
: Math.pow(2, bits-1);
if (value >= half && (bits <= 32 || value > half)) { // for huge values, we can hit the precision limit and always get true here. so don't do that
// but, in general there is no perfect solution here. With 64-bit ints, we get rounding and errors
// TODO: In i64 mode 1, resign the two parts separately and safely
value = -2*half + value; // Cannot bitshift half, as it may be at the limit of the bits JS uses in bitshifts
}
return value;
}
/**
* @license
* Copyright 2019 The Emscripten Authors
* SPDX-License-Identifier: MIT
*/
// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/imul
// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/fround
// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/clz32
// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/trunc
var Math_abs = Math.abs;
var Math_cos = Math.cos;
var Math_sin = Math.sin;
var Math_tan = Math.tan;
var Math_acos = Math.acos;
var Math_asin = Math.asin;
var Math_atan = Math.atan;
var Math_atan2 = Math.atan2;
var Math_exp = Math.exp;
var Math_log = Math.log;
var Math_sqrt = Math.sqrt;
var Math_ceil = Math.ceil;
var Math_floor = Math.floor;
var Math_pow = Math.pow;
var Math_imul = Math.imul;
var Math_fround = Math.fround;
var Math_round = Math.round;
var Math_min = Math.min;
var Math_max = Math.max;
var Math_clz32 = Math.clz32;
var Math_trunc = Math.trunc;
// A counter of dependencies for calling run(). If we need to
// do asynchronous work before running, increment this and
// decrement it. Incrementing must happen in a place like
// Module.preRun (used by emcc to add file preloading).
// Note that you can add dependencies in preRun, even though
// it happens right before run - run will be postponed until
// the dependencies are met.
var runDependencies = 0;
var runDependencyWatcher = null;
var dependenciesFulfilled = null; // overridden to take different actions when all run dependencies are fulfilled
function getUniqueRunDependency(id) {
return id;
}
function addRunDependency(id) {
runDependencies++;
if (Module['monitorRunDependencies']) {
Module['monitorRunDependencies'](runDependencies);
}
}
function removeRunDependency(id) {
runDependencies--;
if (Module['monitorRunDependencies']) {
Module['monitorRunDependencies'](runDependencies);
}
if (runDependencies == 0) {
if (runDependencyWatcher !== null) {
clearInterval(runDependencyWatcher);
runDependencyWatcher = null;
}
if (dependenciesFulfilled) {
var callback = dependenciesFulfilled;
dependenciesFulfilled = null;
callback(); // can add another dependenciesFulfilled
}
}
}
Module["preloadedImages"] = {}; // maps url to image data
Module["preloadedAudios"] = {}; // maps url to audio data
/** @param {string|number=} what */
function abort(what) {
if (Module['onAbort']) {
Module['onAbort'](what);
}
what += '';
out(what);
err(what);
ABORT = true;
EXITSTATUS = 1;
what = 'abort(' + what + '). Build with -s ASSERTIONS=1 for more info.';
// Throw a wasm runtime error, because a JS error might be seen as a foreign
// exception, which means we'd run destructors on it. We need the error to
// simply make the program stop.
throw new WebAssembly.RuntimeError(what);
}
var memoryInitializer = null;
/**
* @license
* Copyright 2015 The Emscripten Authors
* SPDX-License-Identifier: MIT
*/
/**
* @license
* Copyright 2017 The Emscripten Authors
* SPDX-License-Identifier: MIT
*/
function hasPrefix(str, prefix) {
return String.prototype.startsWith ?
str.startsWith(prefix) :
str.indexOf(prefix) === 0;
}
// Prefix of data URIs emitted by SINGLE_FILE and related options.
var dataURIPrefix = 'data:application/octet-stream;base64,';
// Indicates whether filename is a base64 data URI.
function isDataURI(filename) {
return hasPrefix(filename, dataURIPrefix);
}
var fileURIPrefix = "file://";
// Indicates whether filename is delivered via file protocol (as opposed to http/https)
function isFileURI(filename) {
return hasPrefix(filename, fileURIPrefix);
}
var wasmBinaryFile = 'physx.debug.wasm.wasm';
if (!isDataURI(wasmBinaryFile)) {
wasmBinaryFile = locateFile(wasmBinaryFile);
}
function getBinary() {
try {
if (wasmBinary) {
return new Uint8Array(wasmBinary);
}
if (readBinary) {
return readBinary(wasmBinaryFile);
} else {
throw "both async and sync fetching of the wasm failed";
}
}
catch (err) {
abort(err);
}
}
function getBinaryPromise() {
// If we don't have the binary yet, and have the Fetch api, use that;
// in some environments, like Electron's render process, Fetch api may be present, but have a different context than expected, let's only use it on the Web
if (!wasmBinary && (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER) && typeof fetch === 'function'
) {
return fetch(wasmBinaryFile, { credentials: 'same-origin' }).then(function(response) {
if (!response['ok']) {
throw "failed to load wasm binary file at '" + wasmBinaryFile + "'";
}
return response['arrayBuffer']();
}).catch(function () {
return getBinary();
});
}
// Otherwise, getBinary should be able to get it synchronously
return new Promise(function(resolve, reject) {
resolve(getBinary());
});
}
// Create the wasm instance.
// Receives the wasm imports, returns the exports.
function createWasm() {
// prepare imports
var info = {
'env': asmLibraryArg,
'wasi_snapshot_preview1': asmLibraryArg
};
// Load the wasm module and create an instance of using native support in the JS engine.
// handle a generated wasm instance, receiving its exports and
// performing other necessary setup
/** @param {WebAssembly.Module=} module*/
function receiveInstance(instance, module) {
var exports = instance.exports;
Module['asm'] = exports;
removeRunDependency('wasm-instantiate');
}
// we can't run yet (except in a pthread, where we have a custom sync instantiator)
addRunDependency('wasm-instantiate');
function receiveInstantiatedSource(output) {
// 'output' is a WebAssemblyInstantiatedSource object which has both the module and instance.
// receiveInstance() will swap in the exports (to Module.asm) so they can be called
// TODO: Due to Closure regression https://github.com/google/closure-compiler/issues/3193, the above line no longer optimizes out down to the following line.
// When the regression is fixed, can restore the above USE_PTHREADS-enabled path.
receiveInstance(output['instance']);
}
function instantiateArrayBuffer(receiver) {
return getBinaryPromise().then(function(binary) {
return WebAssembly.instantiate(binary, info);
}).then(receiver, function(reason) {
err('failed to asynchronously prepare wasm: ' + reason);
abort(reason);
});
}
// Prefer streaming instantiation if available.
function instantiateAsync() {
if (!wasmBinary &&
typeof WebAssembly.instantiateStreaming === 'function' &&
!isDataURI(wasmBinaryFile) &&
typeof fetch === 'function') {
fetch(wasmBinaryFile, { credentials: 'same-origin' }).then(function (response) {
var result = WebAssembly.instantiateStreaming(response, info);
return result.then(receiveInstantiatedSource, function(reason) {
// We expect the most common failure cause to be a bad MIME type for the binary,
// in which case falling back to ArrayBuffer instantiation should work.
err('wasm streaming compile failed: ' + reason);
err('falling back to ArrayBuffer instantiation');
instantiateArrayBuffer(receiveInstantiatedSource);
});
});
} else {
return instantiateArrayBuffer(receiveInstantiatedSource);
}
}
// User shell pages can write their own Module.instantiateWasm = function(imports, successCallback) callback
// to manually instantiate the Wasm module themselves. This allows pages to run the instantiation parallel
// to any other async startup actions they are performing.
if (Module['instantiateWasm']) {
try {
var exports = Module['instantiateWasm'](info, receiveInstance);
return exports;
} catch(e) {
err('Module.instantiateWasm callback failed with error: ' + e);
return false;
}
}
instantiateAsync();
return {}; // no exports yet; we'll fill them in later
}
// Globals used by JS i64 conversions
var tempDouble;
var tempI64;
// === Body ===
var ASM_CONSTS = {
};
// STATICTOP = STATIC_BASE + 374816;
/* global initializers */ __ATINIT__.push({ func: function() { ___wasm_call_ctors() } });
/* no memory initializer */
// {{PRE_LIBRARY}}
function demangle(func) {
return func;
}
function demangleAll(text) {
var regex =
/\b_Z[\w\d_]+/g;
return text.replace(regex,
function(x) {
var y = demangle(x);
return x === y ? x : (y + ' [' + x + ']');
});
}
function jsStackTrace() {
var err = new Error();
if (!err.stack) {
// IE10+ special cases: It does have callstack info, but it is only populated if an Error object is thrown,
// so try that as a special-case.
try {
throw new Error();
} catch(e) {
err = e;
}
if (!err.stack) {
return '(no stack trace available)';
}
}
return err.stack.toString();
}
function stackTrace() {
var js = jsStackTrace();
if (Module['extraStackTrace']) js += '\n' + Module['extraStackTrace']();
return demangleAll(js);
}
function _atexit(func, arg) {
__ATEXIT__.unshift({ func: func, arg: arg });
}function ___cxa_atexit(a0,a1
) {
return _atexit(a0,a1);
}
var char_0=48;
var char_9=57;function makeLegalFunctionName(name) {
if (undefined === name) {
return '_unknown';
}
name = name.replace(/[^a-zA-Z0-9_]/g, '$');
var f = name.charCodeAt(0);
if (f >= char_0 && f <= char_9) {
return '_' + name;
} else {
return name;
}
}function createNamedFunction(name, body) {
name = makeLegalFunctionName(name);
return function() {
"use strict";
return body.apply(this, arguments);
};
}
var emval_free_list=[];
var emval_handle_array=[{},{value:undefined},{value:null},{value:true},{value:false}];
function count_emval_handles() {
var count = 0;
for (var i = 5; i < emval_handle_array.length; ++i) {
if (emval_handle_array[i] !== undefined) {
++count;
}
}
return count;
}
function get_first_emval() {
for (var i = 5; i < emval_handle_array.length; ++i) {
if (emval_handle_array[i] !== undefined) {
return emval_handle_array[i];
}
}
return null;
}function init_emval() {
Module['count_emval_handles'] = count_emval_handles;
Module['get_first_emval'] = get_first_emval;
}function __emval_register(value) {
switch(value){
case undefined :{ return 1; }
case null :{ return 2; }
case true :{ return 3; }
case false :{ return 4; }
default:{
var handle = emval_free_list.length ?
emval_free_list.pop() :
emval_handle_array.length;
emval_handle_array[handle] = {refcount: 1, value: value};
return handle;
}
}
}
function extendError(baseErrorType, errorName) {
var errorClass = createNamedFunction(errorName, function(message) {
this.name = errorName;
this.message = message;
var stack = (new Error(message)).stack;
if (stack !== undefined) {
this.stack = this.toString() + '\n' +
stack.replace(/^Error(:[^\n]*)?\n/, '');
}
});
errorClass.prototype = Object.create(baseErrorType.prototype);
errorClass.prototype.constructor = errorClass;
errorClass.prototype.toString = function() {
if (this.message === undefined) {
return this.name;
} else {
return this.name + ': ' + this.message;
}
};
return errorClass;
}var PureVirtualError=undefined;
function embind_init_charCodes() {
var codes = new Array(256);
for (var i = 0; i < 256; ++i) {
codes[i] = String.fromCharCode(i);
}
embind_charCodes = codes;
}var embind_charCodes=undefined;function readLatin1String(ptr) {
var ret = "";
var c = ptr;
while (HEAPU8[c]) {
ret += embind_charCodes[HEAPU8[c++]];
}
return ret;
}
function getInheritedInstanceCount() {
return Object.keys(registeredInstances).length;
}
function getLiveInheritedInstances() {
var rv = [];
for (var k in registeredInstances) {
if (registeredInstances.hasOwnProperty(k)) {
rv.push(registeredInstances[k]);
}
}
return rv;
}
var deletionQueue=[];function flushPendingDeletes() {
while (deletionQueue.length) {
var obj = deletionQueue.pop();
obj.$$.deleteScheduled = false;
obj['delete']();
}
}
var delayFunction=undefined;function setDelayFunction(fn) {
delayFunction = fn;
if (deletionQueue.length && delayFunction) {
delayFunction(flushPendingDeletes);
}
}function init_embind() {
Module['getInheritedInstanceCount'] = getInheritedInstanceCount;
Module['getLiveInheritedInstances'] = getLiveInheritedInstances;
Module['flushPendingDeletes'] = flushPendingDeletes;
Module['setDelayFunction'] = setDelayFunction;
}var registeredInstances={};
var BindingError=undefined;function throwBindingError(message) {
throw new BindingError(message);
}function getBasestPointer(class_, ptr) {
if (ptr === undefined) {
throwBindingError('ptr should not be undefined');
}
while (class_.baseClass) {
ptr = class_.upcast(ptr);
class_ = class_.baseClass;
}
return ptr;
}function registerInheritedInstance(class_, ptr, instance) {
ptr = getBasestPointer(class_, ptr);
if (registeredInstances.hasOwnProperty(ptr)) {
throwBindingError('Tried to register registered instance: ' + ptr);
} else {
registeredInstances[ptr] = instance;
}
}
function requireHandle(handle) {
if (!handle) {
throwBindingError('Cannot use deleted val. handle = ' + handle);
}
return emval_handle_array[handle].value;
}
var registeredTypes={};
function getTypeName(type) {
var ptr = ___getTypeName(type);
var rv = readLatin1String(ptr);
_free(ptr);
return rv;
}function requireRegisteredType(rawType, humanName) {
var impl = registeredTypes[rawType];
if (undefined === impl) {
throwBindingError(humanName + " has unknown type " + getTypeName(rawType));
}
return impl;
}
function unregisterInheritedInstance(class_, ptr) {
ptr = getBasestPointer(class_, ptr);
if (registeredInstances.hasOwnProperty(ptr)) {
delete registeredInstances[ptr];
} else {
throwBindingError('Tried to unregister unregistered instance: ' + ptr);
}
}
function detachFinalizer(handle) {}
var finalizationGroup=false;
function runDestructor($$) {
if ($$.smartPtr) {
$$.smartPtrType.rawDestructor($$.smartPtr);
} else {
$$.ptrType.registeredClass.rawDestructor($$.ptr);
}
}function releaseClassHandle($$) {
$$.count.value -= 1;
var toDelete = 0 === $$.count.value;
if (toDelete) {
runDestructor($$);
}
}function attachFinalizer(handle) {
if ('undefined' === typeof FinalizationGroup) {
attachFinalizer = function (handle) { return handle; };
return handle;
}
// If the running environment has a FinalizationGroup (see
// https://github.com/tc39/proposal-weakrefs), then attach finalizers
// for class handles. We check for the presence of FinalizationGroup
// at run-time, not build-time.
finalizationGroup = new FinalizationGroup(function (iter) {
for (var result = iter.next(); !result.done; result = iter.next()) {
var $$ = result.value;
if (!$$.ptr) {
console.warn('object already deleted: ' + $$.ptr);
} else {
releaseClassHandle($$);
}
}
});
attachFinalizer = function(handle) {
finalizationGroup.register(handle, handle.$$, handle.$$);
return handle;
};
detachFinalizer = function(handle) {
finalizationGroup.unregister(handle.$$);
};
return attachFinalizer(handle);
}function __embind_create_inheriting_constructor(constructorName, wrapperType, properties) {
constructorName = readLatin1String(constructorName);
wrapperType = requireRegisteredType(wrapperType, 'wrapper');
properties = requireHandle(properties);
var arraySlice = [].slice;
var registeredClass = wrapperType.registeredClass;
var wrapperPrototype = registeredClass.instancePrototype;
var baseClass = registeredClass.baseClass;
var baseClassPrototype = baseClass.instancePrototype;
var baseConstructor = registeredClass.baseClass.constructor;
var ctor = createNamedFunction(constructorName, function() {
registeredClass.baseClass.pureVirtualFunctions.forEach(function(name) {
if (this[name] === baseClassPrototype[name]) {
throw new PureVirtualError('Pure virtual function ' + name + ' must be implemented in JavaScript');
}
}.bind(this));
Object.defineProperty(this, '__parent', {
value: wrapperPrototype
});
this["__construct"].apply(this, arraySlice.call(arguments));
});
// It's a little nasty that we're modifying the wrapper prototype here.
wrapperPrototype["__construct"] = function __construct() {
if (this === wrapperPrototype) {
throwBindingError("Pass correct 'this' to __construct");
}
var inner = baseConstructor["implement"].apply(
undefined,
[this].concat(arraySlice.call(arguments)));
detachFinalizer(inner);
var $$ = inner.$$;
inner["notifyOnDestruction"]();
$$.preservePointerOnDelete = true;
Object.defineProperties(this, { $$: {
value: $$
}});
attachFinalizer(this);
registerInheritedInstance(registeredClass, $$.ptr, this);
};
wrapperPrototype["__destruct"] = function __destruct() {
if (this === wrapperPrototype) {
throwBindingError("Pass correct 'this' to __destruct");
}
detachFinalizer(this);
unregisterInheritedInstance(registeredClass, this.$$.ptr);
};
ctor.prototype = Object.create(wrapperPrototype);
for (var p in properties) {
ctor.prototype[p] = properties[p];
}
return __emval_register(ctor);
}
var structRegistrations={};
function runDestructors(destructors) {
while (destructors.length) {
var ptr = destructors.pop();
var del = destructors.pop();
del(ptr);
}
}
function simpleReadValueFromPointer(pointer) {
return this['fromWireType'](HEAPU32[pointer >> 2]);
}
var awaitingDependencies={};
var typeDependencies={};
var InternalError=undefined;function throwInternalError(message) {
throw new InternalError(message);
}function whenDependentTypesAreResolved(myTypes, dependentTypes, getTypeConverters) {
myTypes.forEach(function(type) {
typeDependencies[type] = dependentTypes;
});
function onComplete(typeConverters) {
var myTypeConverters = getTypeConverters(typeConverters);
if (myTypeConverters.length !== myTypes.length) {
throwInternalError('Mismatched type converter count');
}
for (var i = 0; i < myTypes.length; ++i) {
registerType(myTypes[i], myTypeConverters[i]);
}
}
var typeConverters = new Array(dependentTypes.length);
var unregisteredTypes = [];
var registered = 0;
dependentTypes.forEach(function(dt, i) {
if (registeredTypes.hasOwnProperty(dt)) {
typeConverters[i] = registeredTypes[dt];
} else {
unregisteredTypes.push(dt);
if (!awaitingDependencies.hasOwnProperty(dt)) {
awaitingDependencies[dt] = [];
}
awaitingDependencies[dt].push(function() {
typeConverters[i] = registeredTypes[dt];
++registered;
if (registered === unregisteredTypes.length) {
onComplete(typeConverters);
}
});
}
});
if (0 === unregisteredTypes.length) {
onComplete(typeConverters);
}
}function __embind_finalize_value_object(structType) {
var reg = structRegistrations[structType];
delete structRegistrations[structType];
var rawConstructor = reg.rawConstructor;
var rawDestructor = reg.rawDestructor;
var fieldRecords = reg.fields;
var fieldTypes = fieldRecords.map(function(field) { return field.getterReturnType; }).
concat(fieldRecords.map(function(field) { return field.setterArgumentType; }));
whenDependentTypesAreResolved([structType], fieldTypes, function(fieldTypes) {
var fields = {};
fieldRecords.forEach(function(field, i) {
var fieldName = field.fieldName;
var getterReturnType = fieldTypes[i];
var getter = field.getter;
var getterContext = field.getterContext;
var setterArgumentType = fieldTypes[i + fieldRecords.length];
var setter = field.setter;
var setterContext = field.setterContext;
fields[fieldName] = {
read: function(ptr) {
return getterReturnType['fromWireType'](
getter(getterContext, ptr));
},
write: function(ptr, o) {
var destructors = [];
setter(setterContext, ptr, setterArgumentType['toWireType'](destructors, o));
runDestructors(destructors);
}
};
});
return [{
name: reg.name,
'fromWireType': function(ptr) {
var rv = {};
for (var i in fields) {
rv[i] = fields[i].read(ptr);
}
rawDestructor(ptr);
return rv;
},
'toWireType': function(destructors, o) {
// todo: Here we have an opportunity for -O3 level "unsafe" optimizations:
// assume all fields are present without checking.
for (var fieldName in fields) {
if (!(fieldName in o)) {
throw new TypeError('Missing field');
}
}
var ptr = rawConstructor();
for (fieldName in fields) {
fields[fieldName].write(ptr, o[fieldName]);
}
if (destructors !== null) {
destructors.push(rawDestructor, ptr);
}
return ptr;
},
'argPackAdvance': 8,
'readValueFromPointer': simpleReadValueFromPointer,
destructorFunction: rawDestructor,
}];
});
}
function getShiftFromSize(size) {
switch (size) {
case 1: return 0;
case 2: return 1;
case 4: return 2;
case 8: return 3;
default:
throw new TypeError('Unknown type size: ' + size);
}
}
/** @param {Object=} options */
function registerType(rawType, registeredInstance, options) {
options = options || {};
if (!('argPackAdvance' in registeredInstance)) {
throw new TypeError('registerType registeredInstance requires argPackAdvance');
}
var name = registeredInstance.name;
if (!rawType) {
throwBindingError('type "' + name + '" must have a positive integer typeid pointer');
}
if (registeredTypes.hasOwnProperty(rawType)) {
if (options.ignoreDuplicateRegistrations) {
return;
} else {
throwBindingError("Cannot register type '" + name + "' twice");
}
}
registeredTypes[rawType] = registeredInstance;
delete typeDependencies[rawType];
if (awaitingDependencies.hasOwnProperty(rawType)) {
var callbacks = awaitingDependencies[rawType];
delete awaitingDependencies[rawType];
callbacks.forEach(function(cb) {
cb();
});
}
}function __embind_register_bool(rawType, name, size, trueValue, falseValue) {
var shift = getShiftFromSize(size);
name = readLatin1String(name);
registerType(rawType, {
name: name,
'fromWireType': function(wt) {
// ambiguous emscripten ABI: sometimes return values are
// true or false, and sometimes integers (0 or 1)
return !!wt;
},
'toWireType': function(destructors, o) {
return o ? trueValue : falseValue;
},
'argPackAdvance': 8,
'readValueFromPointer': function(pointer) {
// TODO: if heap is fixed (like in asm.js) this could be executed outside
var heap;
if (size === 1) {
heap = HEAP8;
} else if (size === 2) {
heap = HEAP16;
} else if (size === 4) {
heap = HEAP32;
} else {
throw new TypeError("Unknown boolean type size: " + name);
}
return this['fromWireType'](heap[pointer >> shift]);
},
destructorFunction: null, // This type does not need a destructor
});
}
function ClassHandle_isAliasOf(other) {
if (!(this instanceof ClassHandle)) {
return false;
}
if (!(other instanceof ClassHandle)) {
return false;
}
var leftClass = this.$$.ptrType.registeredClass;
var left = this.$$.ptr;
var rightClass = other.$$.ptrType.registeredClass;
var right = other.$$.ptr;
while (leftClass.baseClass) {
left = leftClass.upcast(left);
leftClass = leftClass.baseClass;
}
while (rightClass.baseClass) {
right = rightClass.upcast(right);
rightClass = rightClass.baseClass;
}
return leftClass === rightClass && left === right;
}
function shallowCopyInternalPointer(o) {
return {
count: o.count,
deleteScheduled: o.deleteScheduled,
preservePointerOnDelete: o.preservePointerOnDelete,
ptr: o.ptr,
ptrType: o.ptrType,
smartPtr: o.smartPtr,
smartPtrType: o.smartPtrType,
};
}
function throwInstanceAlreadyDeleted(obj) {
function getInstanceTypeName(handle) {
return handle.$$.ptrType.registeredClass.name;
}
throwBindingError(getInstanceTypeName(obj) + ' instance already deleted');
}function ClassHandle_clone() {
if (!this.$$.ptr) {
throwInstanceAlreadyDeleted(this);
}
if (this.$$.preservePointerOnDelete) {
this.$$.count.value += 1;
return this;
} else {
var clone = attachFinalizer(Object.create(Object.getPrototypeOf(this), {
$$: {
value: shallowCopyInternalPointer(this.$$),
}
}));
clone.$$.count.value += 1;
clone.$$.deleteScheduled = false;
return clone;
}
}
function ClassHandle_delete() {
if (!this.$$.ptr) {
throwInstanceAlreadyDeleted(this);
}
if (this.$$.deleteScheduled && !this.$$.preservePointerOnDelete) {
throwBindingError('Object already scheduled for deletion');
}
detachFinalizer(this);
releaseClassHandle(this.$$);
if (!this.$$.preservePointerOnDelete) {
this.$$.smartPtr = undefined;
this.$$.ptr = undefined;
}
}
function ClassHandle_isDeleted() {
return !this.$$.ptr;
}
function ClassHandle_deleteLater() {
if (!this.$$.ptr) {
throwInstanceAlreadyDeleted(this);
}
if (this.$$.deleteScheduled && !this.$$.preservePointerOnDelete) {
throwBindingError('Object already scheduled for deletion');
}
deletionQueue.push(this);
if (deletionQueue.length === 1 && delayFunction) {
delayFunction(flushPendingDeletes);
}
this.$$.deleteScheduled = true;
return this;
}function init_ClassHandle() {
ClassHandle.prototype['isAliasOf'] = ClassHandle_isAliasOf;
ClassHandle.prototype['clone'] = ClassHandle_clone;
ClassHandle.prototype['delete'] = ClassHandle_delete;
ClassHandle.prototype['isDeleted'] = ClassHandle_isDeleted;
ClassHandle.prototype['deleteLater'] = ClassHandle_deleteLater;
}function ClassHandle() {
}
var registeredPointers={};
function ensureOverloadTable(proto, methodName, humanName) {
if (undefined === proto[methodName].overloadTable) {
var prevFunc = proto[methodName];
// Inject an overload resolver function that routes to the appropriate overload based on the number of arguments.
proto[methodName] = function() {
// TODO This check can be removed in -O3 level "unsafe" optimizations.
if (!proto[methodName].overloadTable.hasOwnProperty(arguments.length)) {
throwBindingError("Function '" + humanName + "' called with an invalid number of arguments (" + arguments.length + ") - expects one of (" + proto[methodName].overloadTable + ")!");
}
return proto[methodName].overloadTable[arguments.length].apply(this, arguments);
};
// Move the previous function into the overload table.
proto[methodName].overloadTable = [];
proto[methodName].overloadTable[prevFunc.argCount] = prevFunc;
}
}/** @param {number=} numArguments */
function exposePublicSymbol(name, value, numArguments) {
if (Module.hasOwnProperty(name)) {
if (undefined === numArguments || (undefined !== Module[name].overloadTable && undefined !== Module[name].overloadTable[numArguments])) {
throwBindingError("Cannot register public name '" + name + "' twice");
}
// We are exposing a function with the same name as an existing function. Create an overload table and a function selector
// that routes between the two.
ensureOverloadTable(Module, name, name);
if (Module.hasOwnProperty(numArguments)) {
throwBindingError("Cannot register multiple overloads of a function with the same number of arguments (" + numArguments + ")!");
}
// Add the new function into the overload table.
Module[name].overloadTable[numArguments] = value;
}
else {
Module[name] = value;
if (undefined !== numArguments) {
Module[name].numArguments = numArguments;
}
}
}
/** @constructor */
function RegisteredClass(
name,
constructor,
instancePrototype,
rawDestructor,
baseClass,
getActualType,
upcast,
downcast
) {
this.name = name;
this.constructor = constructor;
this.instancePrototype = instancePrototype;
this.rawDestructor = rawDestructor;
this.baseClass = baseClass;
this.getActualType = getActualType;
this.upcast = upcast;
this.downcast = downcast;
this.pureVirtualFunctions = [];
}
function upcastPointer(ptr, ptrClass, desiredClass) {
while (ptrClass !== desiredClass) {
if (!ptrClass.upcast) {
throwBindingError("Expected null or instance of " + desiredClass.name + ", got an instance of " + ptrClass.name);
}
ptr = ptrClass.upcast(ptr);
ptrClass = ptrClass.baseClass;
}
return ptr;
}function constNoSmartPtrRawPointerToWireType(destructors, handle) {
if (handle === null) {
if (this.isReference) {
throwBindingError('null is not a valid ' + this.name);
}
return 0;
}
if (!handle.$$) {
throwBindingError('Cannot pass "' + _embind_repr(handle) + '" as a ' + this.name);
}
if (!handle.$$.ptr) {
throwBindingError('Cannot pass deleted object as a pointer of type ' + this.name);
}
var handleClass = handle.$$.ptrType.registeredClass;
var ptr = upcastPointer(handle.$$.ptr, handleClass, this.registeredClass);
return ptr;
}
function genericPointerToWireType(destructors, handle) {
var ptr;
if (handle === null) {
if (this.isReference) {
throwBindingError('null is not a valid ' + this.name);
}
if (this.isSmartPointer) {
ptr = this.rawConstructor();
if (destructors !== null) {
destructors.push(this.rawDestructor, ptr);
}
return ptr;
} else {
return 0;
}
}
if (!handle.$$) {
throwBindingError('Cannot pass "' + _embind_repr(handle) + '" as a ' + this.name);
}
if (!handle.$$.ptr) {
throwBindingError('Cannot pass deleted object as a pointer of type ' + this.name);
}
if (!this.isConst && handle.$$.ptrType.isConst) {
throwBindingError('Cannot convert argument of type ' + (handle.$$.smartPtrType ? handle.$$.smartPtrType.name : handle.$$.ptrType.name) + ' to parameter type ' + this.name);
}
var handleClass = handle.$$.ptrType.registeredClass;
ptr = upcastPointer(handle.$$.ptr, handleClass, this.registeredClass);
if (this.isSmartPointer) {
// TODO: this is not strictly true
// We could support BY_EMVAL conversions from raw pointers to smart pointers
// because the smart pointer can hold a reference to the handle
if (undefined === handle.$$.smartPtr) {
throwBindingError('Passing raw pointer to smart pointer is illegal');
}
switch (this.sharingPolicy) {
case 0: // NONE
// no upcasting
if (handle.$$.smartPtrType === this) {
ptr = handle.$$.smartPtr;
} else {
throwBindingError('Cannot convert argument of type ' + (handle.$$.smartPtrType ? handle.$$.smartPtrType.name : handle.$$.ptrType.name) + ' to parameter type ' + this.name);
}
break;
case 1: // INTRUSIVE
ptr = handle.$$.smartPtr;
break;
case 2: // BY_EMVAL
if (handle.$$.smartPtrType === this) {
ptr = handle.$$.smartPtr;
} else {
var clonedHandle = handle['clone']();
ptr = this.rawShare(
ptr,
__emval_register(function() {
clonedHandle['delete']();
})
);
if (destructors !== null) {
destructors.push(this.rawDestructor, ptr);
}
}
break;
default:
throwBindingError('Unsupporting sharing policy');
}
}
return ptr;
}
function nonConstNoSmartPtrRawPointerToWireType(destructors, handle) {
if (handle === null) {
if (this.isReference) {
throwBindingError('null is not a valid ' + this.name);
}
return 0;
}
if (!handle.$$) {
throwBindingError('Cannot pass "' + _embind_repr(handle) + '" as a ' + this.name);
}
if (!handle.$$.ptr) {
throwBindingError('Cannot pass deleted object as a pointer of type ' + this.name);
}
if (handle.$$.ptrType.isConst) {
throwBindingError('Cannot convert argument of type ' + handle.$$.ptrType.name + ' to parameter type ' + this.name);
}
var handleClass = handle.$$.ptrType.registeredClass;
var ptr = upcastPointer(handle.$$.ptr, handleClass, this.registeredClass);
return ptr;
}
function RegisteredPointer_getPointee(ptr) {
if (this.rawGetPointee) {
ptr = this.rawGetPointee(ptr);
}
return ptr;
}
function RegisteredPointer_destructor(ptr) {
if (this.rawDestructor) {
this.rawDestructor(ptr);
}
}
function RegisteredPointer_deleteObject(handle) {
if (handle !== null) {
handle['delete']();
}
}
function downcastPointer(ptr, ptrClass, desiredClass) {
if (ptrClass === desiredClass) {
return ptr;
}
if (undefined === desiredClass.baseClass) {
return null; // no conversion
}
var rv = downcastPointer(ptr, ptrClass, desiredClass.baseClass);
if (rv === null) {
return null;
}
return desiredClass.downcast(rv);
}
function getInheritedInstance(class_, ptr) {
ptr = getBasestPointer(class_, ptr);
return registeredInstances[ptr];
}
function makeClassHandle(prototype, record) {
if (!record.ptrType || !record.ptr) {
throwInternalError('makeClassHandle requires ptr and ptrType');
}
var hasSmartPtrType = !!record.smartPtrType;
var hasSmartPtr = !!record.smartPtr;
if (hasSmartPtrType !== hasSmartPtr) {
throwInternalError('Both smartPtrType and smartPtr must be specified');
}
record.count = { value: 1 };
return attachFinalizer(Object.create(prototype, {
$$: {
value: record,
},
}));
}function RegisteredPointer_fromWireType(ptr) {
// ptr is a raw pointer (or a raw smartpointer)
// rawPointer is a maybe-null raw pointer
var rawPointer = this.getPointee(ptr);
if (!rawPointer) {
this.destructor(ptr);
return null;
}
var registeredInstance = getInheritedInstance(this.registeredClass, rawPointer);
if (undefined !== registeredInstance) {
// JS object has been neutered, time to repopulate it
if (0 === registeredInstance.$$.count.value) {
registeredInstance.$$.ptr = rawPointer;
registeredInstance.$$.smartPtr = ptr;
return registeredInstance['clone']();
} else {
// else, just increment reference count on existing object
// it already has a reference to the smart pointer
var rv = registeredInstance['clone']();
this.destructor(ptr);
return rv;
}
}
function makeDefaultHandle() {
if (this.isSmartPointer) {
return makeClassHandle(this.registeredClass.instancePrototype, {
ptrType: this.pointeeType,
ptr: rawPointer,
smartPtrType: this,
smartPtr: ptr,
});
} else {
return makeClassHandle(this.registeredClass.instancePrototype, {
ptrType: this,
ptr: ptr,
});
}
}
var actualType = this.registeredClass.getActualType(rawPointer);
var registeredPointerRecord = registeredPointers[actualType];
if (!registeredPointerRecord) {
return makeDefaultHandle.call(this);
}
var toType;
if (this.isConst) {
toType = registeredPointerRecord.constPointerType;
} else {
toType = registeredPointerRecord.pointerType;
}
var dp = downcastPointer(
rawPointer,
this.registeredClass,
toType.registeredClass);
if (dp === null) {
return makeDefaultHandle.call(this);
}
if (this.isSmartPointer) {
return makeClassHandle(toType.registeredClass.instancePrototype, {
ptrType: toType,
ptr: dp,
smartPtrType: this,
smartPtr: ptr,
});
} else {
return makeClassHandle(toType.registeredClass.instancePrototype, {
ptrType: toType,
ptr: dp,
});
}
}function init_RegisteredPointer() {
RegisteredPointer.prototype.getPointee = RegisteredPointer_getPointee;
RegisteredPointer.prototype.destructor = RegisteredPointer_destructor;
RegisteredPointer.prototype['argPackAdvance'] = 8;
RegisteredPointer.prototype['readValueFromPointer'] = simpleReadValueFromPointer;
RegisteredPointer.prototype['deleteObject'] = RegisteredPointer_deleteObject;
RegisteredPointer.prototype['fromWireType'] = RegisteredPointer_fromWireType;
}/** @constructor
@param {*=} pointeeType,
@param {*=} sharingPolicy,
@param {*=} rawGetPointee,
@param {*=} rawConstructor,
@param {*=} rawShare,
@param {*=} rawDestructor,
*/
function RegisteredPointer(
name,
registeredClass,
isReference,
isConst,
// smart pointer properties
isSmartPointer,
pointeeType,
sharingPolicy,
rawGetPointee,
rawConstructor,
rawShare,
rawDestructor
) {
this.name = name;
this.registeredClass = registeredClass;
this.isReference = isReference;
this.isConst = isConst;
// smart pointer properties
this.isSmartPointer = isSmartPointer;
this.pointeeType = pointeeType;
this.sharingPolicy = sharingPolicy;
this.rawGetPointee = rawGetPointee;
this.rawConstructor = rawConstructor;
this.rawShare = rawShare;
this.rawDestructor = rawDestructor;
if (!isSmartPointer && registeredClass.baseClass === undefined) {
if (isConst) {
this['toWireType'] = constNoSmartPtrRawPointerToWireType;
this.destructorFunction = null;
} else {
this['toWireType'] = nonConstNoSmartPtrRawPointerToWireType;
this.destructorFunction = null;
}
} else {
this['toWireType'] = genericPointerToWireType;
// Here we must leave this.destructorFunction undefined, since whether genericPointerToWireType returns
// a pointer that needs to be freed up is runtime-dependent, and cannot be evaluated at registration time.
// TODO: Create an alternative mechanism that allows removing the use of var destructors = []; array in
// craftInvokerFunction altogether.
}
}
/** @param {number=} numArguments */
function replacePublicSymbol(name, value, numArguments) {
if (!Module.hasOwnProperty(name)) {
throwInternalError('Replacing nonexistant public symbol');
}
// If there's an overload table for this symbol, replace the symbol in the overload table instead.
if (undefined !== Module[name].overloadTable && undefined !== numArguments) {
Module[name].overloadTable[numArguments] = value;
}
else {
Module[name] = value;
Module[name].argCount = numArguments;
}
}
function embind__requireFunction(signature, rawFunction) {
signature = readLatin1String(signature);
function makeDynCaller(dynCall) {
var argCache = [rawFunction];
return function() {
argCache.length = arguments.length + 1;
for (var i = 0; i < arguments.length; i++) {
argCache[i + 1] = arguments[i];
}
return dynCall.apply(null, argCache);
};
}
var dc = Module['dynCall_' + signature];
var fp = makeDynCaller(dc);
if (typeof fp !== "function") {
throwBindingError("unknown function pointer with signature " + signature + ": " + rawFunction);
}
return fp;
}
var UnboundTypeError=undefined;function throwUnboundTypeError(message, types) {
var unboundTypes = [];
var seen = {};
function visit(type) {
if (seen[type]) {
return;
}
if (registeredTypes[type]) {
return;
}
if (typeDependencies[type]) {
typeDependencies[type].forEach(visit);
return;
}
unboundTypes.push(type);
seen[type] = true;
}
types.forEach(visit);
throw new UnboundTypeError(message + ': ' + unboundTypes.map(getTypeName).join([', ']));
}function __embind_register_class(
rawType,
rawPointerType,
rawConstPointerType,
baseClassRawType,
getActualTypeSignature,
getActualType,
upcastSignature,
upcast,
downcastSignature,
downcast,
name,
destructorSignature,
rawDestructor
) {
name = readLatin1String(name);
getActualType = embind__requireFunction(getActualTypeSignature, getActualType);
if (upcast) {
upcast = embind__requireFunction(upcastSignature, upcast);
}
if (downcast) {
downcast = embind__requireFunction(downcastSignature, downcast);
}
rawDestructor = embind__requireFunction(destructorSignature, rawDestructor);
var legalFunctionName = makeLegalFunctionName(name);
exposePublicSymbol(legalFunctionName, function() {
// this code cannot run if baseClassRawType is zero
throwUnboundTypeError('Cannot construct ' + name + ' due to unbound types', [baseClassRawType]);
});
whenDependentTypesAreResolved(
[rawType, rawPointerType, rawConstPointerType],
baseClassRawType ? [baseClassRawType] : [],
function(base) {
base = base[0];
var baseClass;
var basePrototype;
if (baseClassRawType) {
baseClass = base.registeredClass;
basePrototype = baseClass.instancePrototype;
} else {
basePrototype = ClassHandle.prototype;
}
var constructor = createNamedFunction(legalFunctionName, function() {
if (Object.getPrototypeOf(this) !== instancePrototype) {
throw new BindingError("Use 'new' to construct " + name);
}
if (undefined === registeredClass.constructor_body) {
throw new BindingError(name + " has no accessible constructor");
}
var body = registeredClass.constructor_body[arguments.length];
if (undefined === body) {
throw new BindingError("Tried to invoke ctor of " + name + " with invalid number of parameters (" + arguments.length + ") - expected (" + Object.keys(registeredClass.constructor_body).toString() + ") parameters instead!");
}
return body.apply(this, arguments);
});
var instancePrototype = Object.create(basePrototype, {
constructor: { value: constructor },
});
constructor.prototype = instancePrototype;
var registeredClass = new RegisteredClass(
name,
constructor,
instancePrototype,
rawDestructor,
baseClass,
getActualType,
upcast,
downcast);
var referenceConverter = new RegisteredPointer(
name,
registeredClass,
true,
false,
false);
var pointerConverter = new RegisteredPointer(
name + '*',
registeredClass,
false,
false,
false);
var constPointerConverter = new RegisteredPointer(
name + ' const*',
registeredClass,
false,
true,
false);
registeredPointers[rawType] = {
pointerType: pointerConverter,
constPointerType: constPointerConverter
};
replacePublicSymbol(legalFunctionName, constructor);
return [referenceConverter, pointerConverter, constPointerConverter];
}
);
}
function new_(constructor, argumentList) {
if (!(constructor instanceof Function)) {
throw new TypeError('new_ called with constructor type ' + typeof(constructor) + " which is not a function");
}
if (constructor === Function) {
throw new Error('new_ cannot create a new Function with DYNAMIC_EXECUTION == 0.');
}
/*
* Previously, the following line was just:
function dummy() {};
* Unfortunately, Chrome was preserving 'dummy' as the object's name, even though at creation, the 'dummy' has the
* correct constructor name. Thus, objects created with IMVU.new would show up in the debugger as 'dummy', which
* isn't very helpful. Using IMVU.createNamedFunction addresses the issue. Doublely-unfortunately, there's no way
* to write a test for this behavior. -NRD 2013.02.22
*/
var dummy = createNamedFunction(constructor.name || 'unknownFunctionName', function(){});
dummy.prototype = constructor.prototype;
var obj = new dummy;
var r = constructor.apply(obj, argumentList);
return (r instanceof Object) ? r : obj;
}function craftInvokerFunction(humanName, argTypes, classType, cppInvokerFunc, cppTargetFunc) {
// humanName: a human-readable string name for the function to be generated.
// argTypes: An array that contains the embind type objects for all types in the function signature.
// argTypes[0] is the type object for the function return value.
// argTypes[1] is the type object for function this object/class type, or null if not crafting an invoker for a class method.
// argTypes[2...] are the actual function parameters.
// classType: The embind type object for the class to be bound, or null if this is not a method of a class.
// cppInvokerFunc: JS Function object to the C++-side function that interops into C++ code.
// cppTargetFunc: Function pointer (an integer to FUNCTION_TABLE) to the target C++ function the cppInvokerFunc will end up calling.
var argCount = argTypes.length;
if (argCount < 2) {
throwBindingError("argTypes array size mismatch! Must at least get return value and 'this' types!");
}
var isClassMethodFunc = (argTypes[1] !== null && classType !== null);
// Free functions with signature "void function()" do not need an invoker that marshalls between wire types.
// TODO: This omits argument count check - enable only at -O3 or similar.
// if (ENABLE_UNSAFE_OPTS && argCount == 2 && argTypes[0].name == "void" && !isClassMethodFunc) {
// return FUNCTION_TABLE[fn];
// }
// Determine if we need to use a dynamic stack to store the destructors for the function parameters.
// TODO: Remove this completely once all function invokers are being dynamically generated.
var needsDestructorStack = false;
for(var i = 1; i < argTypes.length; ++i) { // Skip return value at index 0 - it's not deleted here.
if (argTypes[i] !== null && argTypes[i].destructorFunction === undefined) { // The type does not define a destructor function - must use dynamic stack
needsDestructorStack = true;
break;
}
}
var returns = (argTypes[0].name !== "void");
var expectedArgCount = argCount - 2;
var argsWired = new Array(expectedArgCount);
var invokerFuncArgs = [];
var destructors = [];
return function() {
if (arguments.length !== expectedArgCount) {
throwBindingError('function ' + humanName + ' called with ' +
arguments.length + ' arguments, expected ' + expectedArgCount +
' args!');
}
destructors.length = 0;
var thisWired;
invokerFuncArgs.length = isClassMethodFunc ? 2 : 1;
invokerFuncArgs[0] = cppTargetFunc;
if (isClassMethodFunc) {
thisWired = argTypes[1].toWireType(destructors, this);
invokerFuncArgs[1] = thisWired;
}
for (var i = 0; i < expectedArgCount; ++i) {
argsWired[i] = argTypes[i + 2].toWireType(destructors, arguments[i]);
invokerFuncArgs.push(argsWired[i]);
}
var rv = cppInvokerFunc.apply(null, invokerFuncArgs);
if (needsDestructorStack) {
runDestructors(destructors);
} else {
for (var i = isClassMethodFunc ? 1 : 2; i < argTypes.length; i++) {
var param = i === 1 ? thisWired : argsWired[i - 2];
if (argTypes[i].destructorFunction !== null) {
argTypes[i].destructorFunction(param);
}
}
}
if (returns) {
return argTypes[0].fromWireType(rv);
}
};
}
function heap32VectorToArray(count, firstElement) {
var array = [];
for (var i = 0; i < count; i++) {
array.push(HEAP32[(firstElement >> 2) + i]);
}
return array;
}function __embind_register_class_class_function(
rawClassType,
methodName,
argCount,
rawArgTypesAddr,
invokerSignature,
rawInvoker,
fn
) {
var rawArgTypes = heap32VectorToArray(argCount, rawArgTypesAddr);
methodName = readLatin1String(methodName);
rawInvoker = embind__requireFunction(invokerSignature, rawInvoker);
whenDependentTypesAreResolved([], [rawClassType], function(classType) {
classType = classType[0];
var humanName = classType.name + '.' + methodName;
function unboundTypesHandler() {
throwUnboundTypeError('Cannot call ' + humanName + ' due to unbound types', rawArgTypes);
}
var proto = classType.registeredClass.constructor;
if (undefined === proto[methodName]) {
// This is the first function to be registered with this name.
unboundTypesHandler.argCount = argCount-1;
proto[methodName] = unboundTypesHandler;
} else {
// There was an existing function with the same name registered. Set up a function overload routing table.
ensureOverloadTable(proto, methodName, humanName);
proto[methodName].overloadTable[argCount-1] = unboundTypesHandler;
}
whenDependentTypesAreResolved([], rawArgTypes, function(argTypes) {
// Replace the initial unbound-types-handler stub with the proper function. If multiple overloads are registered,
// the function handlers go into an overload table.
var invokerArgsArray = [argTypes[0] /* return value */, null /* no class 'this'*/].concat(argTypes.slice(1) /* actual params */);
var func = craftInvokerFunction(humanName, invokerArgsArray, null /* no class 'this'*/, rawInvoker, fn);
if (undefined === proto[methodName].overloadTable) {
func.argCount = argCount-1;
proto[methodName] = func;
} else {
proto[methodName].overloadTable[argCount-1] = func;
}
return [];
});
return [];
});
}
function __embind_register_class_constructor(
rawClassType,
argCount,
rawArgTypesAddr,
invokerSignature,
invoker,
rawConstructor
) {
assert(argCount > 0);
var rawArgTypes = heap32VectorToArray(argCount, rawArgTypesAddr);
invoker = embind__requireFunction(invokerSignature, invoker);
var args = [rawConstructor];
var destructors = [];
whenDependentTypesAreResolved([], [rawClassType], function(classType) {
classType = classType[0];
var humanName = 'constructor ' + classType.name;
if (undefined === classType.registeredClass.constructor_body) {
classType.registeredClass.constructor_body = [];
}
if (undefined !== classType.registeredClass.constructor_body[argCount - 1]) {
throw new BindingError("Cannot register multiple constructors with identical number of parameters (" + (argCount-1) + ") for class '" + classType.name + "'! Overload resolution is currently only performed using the parameter count, not actual type info!");
}
classType.registeredClass.constructor_body[argCount - 1] = function unboundTypeHandler() {
throwUnboundTypeError('Cannot construct ' + classType.name + ' due to unbound types', rawArgTypes);
};
whenDependentTypesAreResolved([], rawArgTypes, function(argTypes) {
classType.registeredClass.constructor_body[argCount - 1] = function constructor_body() {
if (arguments.length !== argCount - 1) {
throwBindingError(humanName + ' called with ' + arguments.length + ' arguments, expected ' + (argCount-1));
}
destructors.length = 0;
args.length = argCount;
for (var i = 1; i < argCount; ++i) {
args[i] = argTypes[i]['toWireType'](destructors, arguments[i - 1]);
}
var ptr = invoker.apply(null, args);
runDestructors(destructors);
return argTypes[0]['fromWireType'](ptr);
};
return [];
});
return [];
});
}
function __embind_register_class_function(
rawClassType,
methodName,
argCount,
rawArgTypesAddr, // [ReturnType, ThisType, Args...]
invokerSignature,
rawInvoker,
context,
isPureVirtual
) {
var rawArgTypes = heap32VectorToArray(argCount, rawArgTypesAddr);
methodName = readLatin1String(methodName);
rawInvoker = embind__requireFunction(invokerSignature, rawInvoker);
whenDependentTypesAreResolved([], [rawClassType], function(classType) {
classType = classType[0];
var humanName = classType.name + '.' + methodName;
if (isPureVirtual) {
classType.registeredClass.pureVirtualFunctions.push(methodName);
}
function unboundTypesHandler() {
throwUnboundTypeError('Cannot call ' + humanName + ' due to unbound types', rawArgTypes);
}
var proto = classType.registeredClass.instancePrototype;
var method = proto[methodName];
if (undefined === method || (undefined === method.overloadTable && method.className !== classType.name && method.argCount === argCount - 2)) {
// This is the first overload to be registered, OR we are replacing a function in the base class with a function in the derived class.
unboundTypesHandler.argCount = argCount - 2;
unboundTypesHandler.className = classType.name;
proto[methodName] = unboundTypesHandler;
} else {
// There was an existing function with the same name registered. Set up a function overload routing table.
ensureOverloadTable(proto, methodName, humanName);
proto[methodName].overloadTable[argCount - 2] = unboundTypesHandler;
}
whenDependentTypesAreResolved([], rawArgTypes, function(argTypes) {
var memberFunction = craftInvokerFunction(humanName, argTypes, classType, rawInvoker, context);
// Replace the initial unbound-handler-stub function with the appropriate member function, now that all types
// are resolved. If multiple overloads are registered for this function, the function goes into an overload table.
if (undefined === proto[methodName].overloadTable) {
// Set argCount in case an overload is registered later
memberFunction.argCount = argCount - 2;
proto[methodName] = memberFunction;
} else {
proto[methodName].overloadTable[argCount - 2] = memberFunction;
}
return [];
});
return [];
});
}
function validateThis(this_, classType, humanName) {
if (!(this_ instanceof Object)) {
throwBindingError(humanName + ' with invalid "this": ' + this_);
}
if (!(this_ instanceof classType.registeredClass.constructor)) {
throwBindingError(humanName + ' incompatible with "this" of type ' + this_.constructor.name);
}
if (!this_.$$.ptr) {
throwBindingError('cannot call emscripten binding method ' + humanName + ' on deleted object');
}
// todo: kill this
return upcastPointer(
this_.$$.ptr,
this_.$$.ptrType.registeredClass,
classType.registeredClass);
}function __embind_register_class_property(
classType,
fieldName,
getterReturnType,
getterSignature,
getter,
getterContext,
setterArgumentType,
setterSignature,
setter,
setterContext
) {
fieldName = readLatin1String(fieldName);
getter = embind__requireFunction(getterSignature, getter);
whenDependentTypesAreResolved([], [classType], function(classType) {
classType = classType[0];
var humanName = classType.name + '.' + fieldName;
var desc = {
get: function() {
throwUnboundTypeError('Cannot access ' + humanName + ' due to unbound types', [getterReturnType, setterArgumentType]);
},
enumerable: true,
configurable: true
};
if (setter) {
desc.set = function() {
throwUnboundTypeError('Cannot access ' + humanName + ' due to unbound types', [getterReturnType, setterArgumentType]);
};
} else {
desc.set = function(v) {
throwBindingError(humanName + ' is a read-only property');
};
}
Object.defineProperty(classType.registeredClass.instancePrototype, fieldName, desc);
whenDependentTypesAreResolved(
[],
(setter ? [getterReturnType, setterArgumentType] : [getterReturnType]),
function(types) {
var getterReturnType = types[0];
var desc = {
get: function() {
var ptr = validateThis(this, classType, humanName + ' getter');
return getterReturnType['fromWireType'](getter(getterContext, ptr));
},
enumerable: true
};
if (setter) {
setter = embind__requireFunction(setterSignature, setter);
var setterArgumentType = types[1];
desc.set = function(v) {
var ptr = validateThis(this, classType, humanName + ' setter');
var destructors = [];
setter(setterContext, ptr, setterArgumentType['toWireType'](destructors, v));
runDestructors(destructors);
};
}
Object.defineProperty(classType.registeredClass.instancePrototype, fieldName, desc);
return [];
});
return [];
});
}
function __embind_register_constant(name, type, value) {
name = readLatin1String(name);
whenDependentTypesAreResolved([], [type], function(type) {
type = type[0];
Module[name] = type['fromWireType'](value);
return [];
});
}
function __emval_decref(handle) {
if (handle > 4 && 0 === --emval_handle_array[handle].refcount) {
emval_handle_array[handle] = undefined;
emval_free_list.push(handle);
}
}function __embind_register_emval(rawType, name) {
name = readLatin1String(name);
registerType(rawType, {
name: name,
'fromWireType': function(handle) {
var rv = emval_handle_array[handle].value;
__emval_decref(handle);
return rv;
},
'toWireType': function(destructors, value) {
return __emval_register(value);
},
'argPackAdvance': 8,
'readValueFromPointer': simpleReadValueFromPointer,
destructorFunction: null, // This type does not need a destructor
// TODO: do we need a deleteObject here? write a test where
// emval is passed into JS via an interface
});
}
function enumReadValueFromPointer(name, shift, signed) {
switch (shift) {
case 0: return function(pointer) {
var heap = signed ? HEAP8 : HEAPU8;
return this['fromWireType'](heap[pointer]);
};
case 1: return function(pointer) {
var heap = signed ? HEAP16 : HEAPU16;
return this['fromWireType'](heap[pointer >> 1]);
};
case 2: return function(pointer) {
var heap = signed ? HEAP32 : HEAPU32;
return this['fromWireType'](heap[pointer >> 2]);
};
default:
throw new TypeError("Unknown integer type: " + name);
}
}function __embind_register_enum(
rawType,
name,
size,
isSigned
) {
var shift = getShiftFromSize(size);
name = readLatin1String(name);
function ctor() {
}
ctor.values = {};
registerType(rawType, {
name: name,
constructor: ctor,
'fromWireType': function(c) {
return this.constructor.values[c];
},
'toWireType': function(destructors, c) {
return c.value;
},
'argPackAdvance': 8,
'readValueFromPointer': enumReadValueFromPointer(name, shift, isSigned),
destructorFunction: null,
});
exposePublicSymbol(name, ctor);
}
function __embind_register_enum_value(
rawEnumType,
name,
enumValue
) {
var enumType = requireRegisteredType(rawEnumType, 'enum');
name = readLatin1String(name);
var Enum = enumType.constructor;
var Value = Object.create(enumType.constructor.prototype, {
value: {value: enumValue},
constructor: {value: createNamedFunction(enumType.name + '_' + name, function() {})},
});
Enum.values[enumValue] = Value;
Enum[name] = Value;
}
function _embind_repr(v) {
if (v === null) {
return 'null';
}
var t = typeof v;
if (t === 'object' || t === 'array' || t === 'function') {
return v.toString();
} else {
return '' + v;
}
}
function floatReadValueFromPointer(name, shift) {
switch (shift) {
case 2: return function(pointer) {
return this['fromWireType'](HEAPF32[pointer >> 2]);
};
case 3: return function(pointer) {
return this['fromWireType'](HEAPF64[pointer >> 3]);
};
default:
throw new TypeError("Unknown float type: " + name);
}
}function __embind_register_float(rawType, name, size) {
var shift = getShiftFromSize(size);
name = readLatin1String(name);
registerType(rawType, {
name: name,
'fromWireType': function(value) {
return value;
},
'toWireType': function(destructors, value) {
// todo: Here we have an opportunity for -O3 level "unsafe" optimizations: we could
// avoid the following if() and assume value is of proper type.
if (typeof value !== "number" && typeof value !== "boolean") {
throw new TypeError('Cannot convert "' + _embind_repr(value) + '" to ' + this.name);
}
return value;
},
'argPackAdvance': 8,
'readValueFromPointer': floatReadValueFromPointer(name, shift),
destructorFunction: null, // This type does not need a destructor
});
}
function __embind_register_function(name, argCount, rawArgTypesAddr, signature, rawInvoker, fn) {
var argTypes = heap32VectorToArray(argCount, rawArgTypesAddr);
name = readLatin1String(name);
rawInvoker = embind__requireFunction(signature, rawInvoker);
exposePublicSymbol(name, function() {
throwUnboundTypeError('Cannot call ' + name + ' due to unbound types', argTypes);
}, argCount - 1);
whenDependentTypesAreResolved([], argTypes, function(argTypes) {
var invokerArgsArray = [argTypes[0] /* return value */, null /* no class 'this'*/].concat(argTypes.slice(1) /* actual params */);
replacePublicSymbol(name, craftInvokerFunction(name, invokerArgsArray, null /* no class 'this'*/, rawInvoker, fn), argCount - 1);
return [];
});
}
function integerReadValueFromPointer(name, shift, signed) {
// integers are quite common, so generate very specialized functions
switch (shift) {
case 0: return signed ?
function readS8FromPointer(pointer) { return HEAP8[pointer]; } :
function readU8FromPointer(pointer) { return HEAPU8[pointer]; };
case 1: return signed ?
function readS16FromPointer(pointer) { return HEAP16[pointer >> 1]; } :
function readU16FromPointer(pointer) { return HEAPU16[pointer >> 1]; };
case 2: return signed ?
function readS32FromPointer(pointer) { return HEAP32[pointer >> 2]; } :
function readU32FromPointer(pointer) { return HEAPU32[pointer >> 2]; };
default:
throw new TypeError("Unknown integer type: " + name);
}
}function __embind_register_integer(primitiveType, name, size, minRange, maxRange) {
name = readLatin1String(name);
if (maxRange === -1) { // LLVM doesn't have signed and unsigned 32-bit types, so u32 literals come out as 'i32 -1'. Always treat those as max u32.
maxRange = 4294967295;
}
var shift = getShiftFromSize(size);
var fromWireType = function(value) {
return value;
};
if (minRange === 0) {
var bitshift = 32 - 8*size;
fromWireType = function(value) {
return (value << bitshift) >>> bitshift;
};
}
var isUnsignedType = (name.indexOf('unsigned') != -1);
registerType(primitiveType, {
name: name,
'fromWireType': fromWireType,
'toWireType': function(destructors, value) {
// todo: Here we have an opportunity for -O3 level "unsafe" optimizations: we could
// avoid the following two if()s and assume value is of proper type.
if (typeof value !== "number" && typeof value !== "boolean") {
throw new TypeError('Cannot convert "' + _embind_repr(value) + '" to ' + this.name);
}
if (value < minRange || value > maxRange) {
throw new TypeError('Passing a number "' + _embind_repr(value) + '" from JS side to C/C++ side to an argument of type "' + name + '", which is outside the valid range [' + minRange + ', ' + maxRange + ']!');
}
return isUnsignedType ? (value >>> 0) : (value | 0);
},
'argPackAdvance': 8,
'readValueFromPointer': integerReadValueFromPointer(name, shift, minRange !== 0),
destructorFunction: null, // This type does not need a destructor
});
}
function __embind_register_memory_view(rawType, dataTypeIndex, name) {
var typeMapping = [
Int8Array,
Uint8Array,
Int16Array,
Uint16Array,
Int32Array,
Uint32Array,
Float32Array,
Float64Array,
];
var TA = typeMapping[dataTypeIndex];
function decodeMemoryView(handle) {
handle = handle >> 2;
var heap = HEAPU32;
var size = heap[handle]; // in elements
var data = heap[handle + 1]; // byte offset into emscripten heap
return new TA(buffer, data, size);
}
name = readLatin1String(name);
registerType(rawType, {
name: name,
'fromWireType': decodeMemoryView,
'argPackAdvance': 8,
'readValueFromPointer': decodeMemoryView,
}, {
ignoreDuplicateRegistrations: true,
});
}
function __embind_register_std_string(rawType, name) {
name = readLatin1String(name);
var stdStringIsUTF8
//process only std::string bindings with UTF8 support, in contrast to e.g. std::basic_string<unsigned char>
= (name === "std::string");
registerType(rawType, {
name: name,
'fromWireType': function(value) {
var length = HEAPU32[value >> 2];
var str;
if (stdStringIsUTF8) {
var decodeStartPtr = value + 4;
// Looping here to support possible embedded '0' bytes
for (var i = 0; i <= length; ++i) {
var currentBytePtr = value + 4 + i;
if (HEAPU8[currentBytePtr] == 0 || i == length) {
var maxRead = currentBytePtr - decodeStartPtr;
var stringSegment = UTF8ToString(decodeStartPtr, maxRead);
if (str === undefined) {
str = stringSegment;
} else {
str += String.fromCharCode(0);
str += stringSegment;
}
decodeStartPtr = currentBytePtr + 1;
}
}
} else {
var a = new Array(length);
for (var i = 0; i < length; ++i) {
a[i] = String.fromCharCode(HEAPU8[value + 4 + i]);
}
str = a.join('');
}
_free(value);
return str;
},
'toWireType': function(destructors, value) {
if (value instanceof ArrayBuffer) {
value = new Uint8Array(value);
}
var getLength;
var valueIsOfTypeString = (typeof value === 'string');
if (!(valueIsOfTypeString || value instanceof Uint8Array || value instanceof Uint8ClampedArray || value instanceof Int8Array)) {
throwBindingError('Cannot pass non-string to std::string');
}
if (stdStringIsUTF8 && valueIsOfTypeString) {
getLength = function() {return lengthBytesUTF8(value);};
} else {
getLength = function() {return value.length;};
}
// assumes 4-byte alignment
var length = getLength();
var ptr = _malloc(4 + length + 1);
HEAPU32[ptr >> 2] = length;
if (stdStringIsUTF8 && valueIsOfTypeString) {
stringToUTF8(value, ptr + 4, length + 1);
} else {
if (valueIsOfTypeString) {
for (var i = 0; i < length; ++i) {
var charCode = value.charCodeAt(i);
if (charCode > 255) {
_free(ptr);
throwBindingError('String has UTF-16 code units that do not fit in 8 bits');
}
HEAPU8[ptr + 4 + i] = charCode;
}
} else {
for (var i = 0; i < length; ++i) {
HEAPU8[ptr + 4 + i] = value[i];
}
}
}
if (destructors !== null) {
destructors.push(_free, ptr);
}
return ptr;
},
'argPackAdvance': 8,
'readValueFromPointer': simpleReadValueFromPointer,
destructorFunction: function(ptr) { _free(ptr); },
});
}
function __embind_register_std_wstring(rawType, charSize, name) {
name = readLatin1String(name);
var decodeString, encodeString, getHeap, lengthBytesUTF, shift;
if (charSize === 2) {
decodeString = UTF16ToString;
encodeString = stringToUTF16;
lengthBytesUTF = lengthBytesUTF16;
getHeap = function() { return HEAPU16; };
shift = 1;
} else if (charSize === 4) {
decodeString = UTF32ToString;
encodeString = stringToUTF32;
lengthBytesUTF = lengthBytesUTF32;
getHeap = function() { return HEAPU32; };
shift = 2;
}
registerType(rawType, {
name: name,
'fromWireType': function(value) {
// Code mostly taken from _embind_register_std_string fromWireType
var length = HEAPU32[value >> 2];
var HEAP = getHeap();
var str;
var decodeStartPtr = value + 4;
// Looping here to support possible embedded '0' bytes
for (var i = 0; i <= length; ++i) {
var currentBytePtr = value + 4 + i * charSize;
if (HEAP[currentBytePtr >> shift] == 0 || i == length) {
var maxReadBytes = currentBytePtr - decodeStartPtr;
var stringSegment = decodeString(decodeStartPtr, maxReadBytes);
if (str === undefined) {
str = stringSegment;
} else {
str += String.fromCharCode(0);
str += stringSegment;
}
decodeStartPtr = currentBytePtr + charSize;
}
}
_free(value);
return str;
},
'toWireType': function(destructors, value) {
if (!(typeof value === 'string')) {
throwBindingError('Cannot pass non-string to C++ string type ' + name);
}
// assumes 4-byte alignment
var length = lengthBytesUTF(value);
var ptr = _malloc(4 + length + charSize);
HEAPU32[ptr >> 2] = length >> shift;
encodeString(value, ptr + 4, length + charSize);
if (destructors !== null) {
destructors.push(_free, ptr);
}
return ptr;
},
'argPackAdvance': 8,
'readValueFromPointer': simpleReadValueFromPointer,
destructorFunction: function(ptr) { _free(ptr); },
});
}
function __embind_register_value_object(
rawType,
name,
constructorSignature,
rawConstructor,
destructorSignature,
rawDestructor
) {
structRegistrations[rawType] = {
name: readLatin1String(name),
rawConstructor: embind__requireFunction(constructorSignature, rawConstructor),
rawDestructor: embind__requireFunction(destructorSignature, rawDestructor),
fields: [],
};
}
function __embind_register_value_object_field(
structType,
fieldName,
getterReturnType,
getterSignature,
getter,
getterContext,
setterArgumentType,
setterSignature,
setter,
setterContext
) {
structRegistrations[structType].fields.push({
fieldName: readLatin1String(fieldName),
getterReturnType: getterReturnType,
getter: embind__requireFunction(getterSignature, getter),
getterContext: getterContext,
setterArgumentType: setterArgumentType,
setter: embind__requireFunction(setterSignature, setter),
setterContext: setterContext,
});
}
function __embind_register_void(rawType, name) {
name = readLatin1String(name);
registerType(rawType, {
isVoid: true, // void return values can be optimized out sometimes
name: name,
'argPackAdvance': 0,
'fromWireType': function() {
return undefined;
},
'toWireType': function(destructors, o) {
// TODO: assert if anything else is given?
return undefined;
},
});
}
function __emval_allocateDestructors(destructorsRef) {
var destructors = [];
HEAP32[destructorsRef >> 2] = __emval_register(destructors);
return destructors;
}
var emval_symbols={};function getStringOrSymbol(address) {
var symbol = emval_symbols[address];
if (symbol === undefined) {
return readLatin1String(address);
} else {
return symbol;
}
}
var emval_methodCallers=[];function __emval_call_method(caller, handle, methodName, destructorsRef, args) {
caller = emval_methodCallers[caller];
handle = requireHandle(handle);
methodName = getStringOrSymbol(methodName);
return caller(handle, methodName, __emval_allocateDestructors(destructorsRef), args);
}
function __emval_call_void_method(caller, handle, methodName, args) {
caller = emval_methodCallers[caller];
handle = requireHandle(handle);
methodName = getStringOrSymbol(methodName);
caller(handle, methodName, null, args);
}
function __emval_addMethodCaller(caller) {
var id = emval_methodCallers.length;
emval_methodCallers.push(caller);
return id;
}
function __emval_lookupTypes(argCount, argTypes) {
var a = new Array(argCount);
for (var i = 0; i < argCount; ++i) {
a[i] = requireRegisteredType(
HEAP32[(argTypes >> 2) + i],
"parameter " + i);
}
return a;
}function __emval_get_method_caller(argCount, argTypes) {
var types = __emval_lookupTypes(argCount, argTypes);
var retType = types[0];
var argN = new Array(argCount - 1);
var invokerFunction = function(handle, name, destructors, args) {
var offset = 0;
for (var i = 0; i < argCount - 1; ++i) {
argN[i] = types[i + 1].readValueFromPointer(args + offset);
offset += types[i + 1].argPackAdvance;
}
var rv = handle[name].apply(handle, argN);
for (var i = 0; i < argCount - 1; ++i) {
if (types[i + 1].deleteObject) {
types[i + 1].deleteObject(argN[i]);
}
}
if (!retType.isVoid) {
return retType.toWireType(destructors, rv);
}
};
return __emval_addMethodCaller(invokerFunction);
}
function __emval_incref(handle) {
if (handle > 4) {
emval_handle_array[handle].refcount += 1;
}
}
function __emval_run_destructors(handle) {
var destructors = emval_handle_array[handle].value;
runDestructors(destructors);
__emval_decref(handle);
}
function __emval_take_value(type, argv) {
type = requireRegisteredType(type, '_emval_take_value');
var v = type['readValueFromPointer'](argv);
return __emval_register(v);
}
function _abort() {
abort();
}
var _abs=Math_abs;
var _emscripten_get_now;_emscripten_get_now = function() { return performance.now(); }
;
var _emscripten_get_now_is_monotonic=true;;
function setErrNo(value) {
HEAP32[((___errno_location())>>2)]=value;
return value;
}function _clock_gettime(clk_id, tp) {
// int clock_gettime(clockid_t clk_id, struct timespec *tp);
var now;
if (clk_id === 0) {
now = Date.now();
} else if ((clk_id === 1 || clk_id === 4) && _emscripten_get_now_is_monotonic) {
now = _emscripten_get_now();
} else {
setErrNo(28);
return -1;
}
HEAP32[((tp)>>2)]=(now/1000)|0; // seconds
HEAP32[(((tp)+(4))>>2)]=((now % 1000)*1000*1000)|0; // nanoseconds
return 0;
}
function _emscripten_get_sbrk_ptr() {
return 375680;
}
function _emscripten_memcpy_big(dest, src, num) {
HEAPU8.copyWithin(dest, src, src + num);
}
function _emscripten_get_heap_size() {
return HEAPU8.length;
}
function emscripten_realloc_buffer(size) {
try {
// round size grow request up to wasm page size (fixed 64KB per spec)
wasmMemory.grow((size - buffer.byteLength + 65535) >>> 16); // .grow() takes a delta compared to the previous size
updateGlobalBufferAndViews(wasmMemory.buffer);
return 1 /*success*/;
} catch(e) {
}
}function _emscripten_resize_heap(requestedSize) {
requestedSize = requestedSize >>> 0;
var oldSize = _emscripten_get_heap_size();
// With pthreads, races can happen (another thread might increase the size in between), so return a failure, and let the caller retry.
var PAGE_MULTIPLE = 65536;
// Memory resize rules:
// 1. When resizing, always produce a resized heap that is at least 16MB (to avoid tiny heap sizes receiving lots of repeated resizes at startup)
// 2. Always increase heap size to at least the requested size, rounded up to next page multiple.
// 3a. If MEMORY_GROWTH_LINEAR_STEP == -1, excessively resize the heap geometrically: increase the heap size according to
// MEMORY_GROWTH_GEOMETRIC_STEP factor (default +20%),
// At most overreserve by MEMORY_GROWTH_GEOMETRIC_CAP bytes (default 96MB).
// 3b. If MEMORY_GROWTH_LINEAR_STEP != -1, excessively resize the heap linearly: increase the heap size by at least MEMORY_GROWTH_LINEAR_STEP bytes.
// 4. Max size for the heap is capped at 2048MB-PAGE_MULTIPLE, or by MAXIMUM_MEMORY, or by ASAN limit, depending on which is smallest
// 5. If we were unable to allocate as much memory, it may be due to over-eager decision to excessively reserve due to (3) above.
// Hence if an allocation fails, cut down on the amount of excess growth, in an attempt to succeed to perform a smaller allocation.
// A limit was set for how much we can grow. We should not exceed that
// (the wasm binary specifies it, so if we tried, we'd fail anyhow).
var maxHeapSize = 2147483648;
if (requestedSize > maxHeapSize) {
return false;
}
var minHeapSize = 16777216;
// Loop through potential heap size increases. If we attempt a too eager reservation that fails, cut down on the
// attempted size and reserve a smaller bump instead. (max 3 times, chosen somewhat arbitrarily)
for(var cutDown = 1; cutDown <= 4; cutDown *= 2) {
var overGrownHeapSize = oldSize * (1 + 0.2 / cutDown); // ensure geometric growth
// but limit overreserving (default to capping at +96MB overgrowth at most)
overGrownHeapSize = Math.min(overGrownHeapSize, requestedSize + 100663296 );
var newSize = Math.min(maxHeapSize, alignUp(Math.max(minHeapSize, requestedSize, overGrownHeapSize), PAGE_MULTIPLE));
var replacement = emscripten_realloc_buffer(newSize);
if (replacement) {
return true;
}
}
return false;
}
function flush_NO_FILESYSTEM() {
// flush anything remaining in the buffers during shutdown
if (typeof _fflush !== 'undefined') _fflush(0);
var buffers = SYSCALLS.buffers;
if (buffers[1].length) SYSCALLS.printChar(1, 10);
if (buffers[2].length) SYSCALLS.printChar(2, 10);
}
var PATH={splitPath:function(filename) {
var splitPathRe = /^(\/?|)([\s\S]*?)((?:\.{1,2}|[^\/]+?|)(\.[^.\/]*|))(?:[\/]*)$/;
return splitPathRe.exec(filename).slice(1);
},normalizeArray:function(parts, allowAboveRoot) {
// if the path tries to go above the root, `up` ends up > 0
var up = 0;
for (var i = parts.length - 1; i >= 0; i--) {
var last = parts[i];
if (last === '.') {
parts.splice(i, 1);
} else if (last === '..') {
parts.splice(i, 1);
up++;
} else if (up) {
parts.splice(i, 1);
up--;
}
}
// if the path is allowed to go above the root, restore leading ..s
if (allowAboveRoot) {
for (; up; up--) {
parts.unshift('..');
}
}
return parts;
},normalize:function(path) {
var isAbsolute = path.charAt(0) === '/',
trailingSlash = path.substr(-1) === '/';
// Normalize the path
path = PATH.normalizeArray(path.split('/').filter(function(p) {
return !!p;
}), !isAbsolute).join('/');
if (!path && !isAbsolute) {
path = '.';
}
if (path && trailingSlash) {
path += '/';
}
return (isAbsolute ? '/' : '') + path;
},dirname:function(path) {
var result = PATH.splitPath(path),
root = result[0],
dir = result[1];
if (!root && !dir) {
// No dirname whatsoever
return '.';
}
if (dir) {
// It has a dirname, strip trailing slash
dir = dir.substr(0, dir.length - 1);
}
return root + dir;
},basename:function(path) {
// EMSCRIPTEN return '/'' for '/', not an empty string
if (path === '/') return '/';
var lastSlash = path.lastIndexOf('/');
if (lastSlash === -1) return path;
return path.substr(lastSlash+1);
},extname:function(path) {
return PATH.splitPath(path)[3];
},join:function() {
var paths = Array.prototype.slice.call(arguments, 0);
return PATH.normalize(paths.join('/'));
},join2:function(l, r) {
return PATH.normalize(l + '/' + r);
}};var SYSCALLS={mappings:{},buffers:[null,[],[]],printChar:function(stream, curr) {
var buffer = SYSCALLS.buffers[stream];
if (curr === 0 || curr === 10) {
(stream === 1 ? out : err)(UTF8ArrayToString(buffer, 0));
buffer.length = 0;
} else {
buffer.push(curr);
}
},varargs:undefined,get:function() {
SYSCALLS.varargs += 4;
var ret = HEAP32[(((SYSCALLS.varargs)-(4))>>2)];
return ret;
},getStr:function(ptr) {
var ret = UTF8ToString(ptr);
return ret;
},get64:function(low, high) {
return low;
}};function _fd_write(fd, iov, iovcnt, pnum) {
// hack to support printf in SYSCALLS_REQUIRE_FILESYSTEM=0
var num = 0;
for (var i = 0; i < iovcnt; i++) {
var ptr = HEAP32[(((iov)+(i*8))>>2)];
var len = HEAP32[(((iov)+(i*8 + 4))>>2)];
for (var j = 0; j < len; j++) {
SYSCALLS.printChar(fd, HEAPU8[ptr+j]);
}
num += len;
}
HEAP32[((pnum)>>2)]=num
return 0;
}
function _gettimeofday(ptr) {
var now = Date.now();
HEAP32[((ptr)>>2)]=(now/1000)|0; // seconds
HEAP32[(((ptr)+(4))>>2)]=((now % 1000)*1000)|0; // microseconds
return 0;
}
function _usleep(useconds) {
// int usleep(useconds_t useconds);
// http://pubs.opengroup.org/onlinepubs/000095399/functions/usleep.html
// We're single-threaded, so use a busy loop. Super-ugly.
var start = _emscripten_get_now();
while (_emscripten_get_now() - start < useconds / 1000) {
// Do nothing.
}
}function _nanosleep(rqtp, rmtp) {
// int nanosleep(const struct timespec *rqtp, struct timespec *rmtp);
if (rqtp === 0) {
setErrNo(28);
return -1;
}
var seconds = HEAP32[((rqtp)>>2)];
var nanoseconds = HEAP32[(((rqtp)+(4))>>2)];
if (nanoseconds < 0 || nanoseconds > 999999999 || seconds < 0) {
setErrNo(28);
return -1;
}
if (rmtp !== 0) {
HEAP32[((rmtp)>>2)]=0;
HEAP32[(((rmtp)+(4))>>2)]=0;
}
return _usleep((seconds * 1e6) + (nanoseconds / 1000));
}
function _pthread_attr_destroy(attr) {
/* int pthread_attr_destroy(pthread_attr_t *attr); */
//FIXME: should destroy the pthread_attr_t struct
return 0;
}
function _pthread_attr_init(attr) {
/* int pthread_attr_init(pthread_attr_t *attr); */
//FIXME: should allocate a pthread_attr_t
return 0;
}
function _pthread_attr_setstacksize() {}
function _pthread_cancel() {}
function _pthread_create() {
return 6;
}
function _exit(status) {
// void _exit(int status);
// http://pubs.opengroup.org/onlinepubs/000095399/functions/exit.html
exit(status);
}function _pthread_exit(status) {
_exit(status);
}
function _pthread_join() {}
function _pthread_mutexattr_destroy() {}
function _pthread_mutexattr_init() {}
function _pthread_mutexattr_setprotocol() {}
function _pthread_mutexattr_settype() {}
function _setTempRet0($i) {
setTempRet0(($i) | 0);
}
init_emval();;
PureVirtualError = Module['PureVirtualError'] = extendError(Error, 'PureVirtualError');;
embind_init_charCodes();
init_embind();;
BindingError = Module['BindingError'] = extendError(Error, 'BindingError');;
InternalError = Module['InternalError'] = extendError(Error, 'InternalError');;
init_ClassHandle();
init_RegisteredPointer();
UnboundTypeError = Module['UnboundTypeError'] = extendError(Error, 'UnboundTypeError');;
var ASSERTIONS = false;
/**
* @license
* Copyright 2017 The Emscripten Authors
* SPDX-License-Identifier: MIT
*/
/** @type {function(string, boolean=, number=)} */
function intArrayFromString(stringy, dontAddNull, length) {
var len = length > 0 ? length : lengthBytesUTF8(stringy)+1;
var u8array = new Array(len);
var numBytesWritten = stringToUTF8Array(stringy, u8array, 0, u8array.length);
if (dontAddNull) u8array.length = numBytesWritten;
return u8array;
}
function intArrayToString(array) {
var ret = [];
for (var i = 0; i < array.length; i++) {
var chr = array[i];
if (chr > 0xFF) {
if (ASSERTIONS) {
assert(false, 'Character code ' + chr + ' (' + String.fromCharCode(chr) + ') at offset ' + i + ' not in 0x00-0xFF.');
}
chr &= 0xFF;
}
ret.push(String.fromCharCode(chr));
}
return ret.join('');
}
var asmGlobalArg = {};
var asmLibraryArg = { "__cxa_atexit": ___cxa_atexit, "_embind_create_inheriting_constructor": __embind_create_inheriting_constructor, "_embind_finalize_value_object": __embind_finalize_value_object, "_embind_register_bool": __embind_register_bool, "_embind_register_class": __embind_register_class, "_embind_register_class_class_function": __embind_register_class_class_function, "_embind_register_class_constructor": __embind_register_class_constructor, "_embind_register_class_function": __embind_register_class_function, "_embind_register_class_property": __embind_register_class_property, "_embind_register_constant": __embind_register_constant, "_embind_register_emval": __embind_register_emval, "_embind_register_enum": __embind_register_enum, "_embind_register_enum_value": __embind_register_enum_value, "_embind_register_float": __embind_register_float, "_embind_register_function": __embind_register_function, "_embind_register_integer": __embind_register_integer, "_embind_register_memory_view": __embind_register_memory_view, "_embind_register_std_string": __embind_register_std_string, "_embind_register_std_wstring": __embind_register_std_wstring, "_embind_register_value_object": __embind_register_value_object, "_embind_register_value_object_field": __embind_register_value_object_field, "_embind_register_void": __embind_register_void, "_emval_call_method": __emval_call_method, "_emval_call_void_method": __emval_call_void_method, "_emval_decref": __emval_decref, "_emval_get_method_caller": __emval_get_method_caller, "_emval_incref": __emval_incref, "_emval_run_destructors": __emval_run_destructors, "_emval_take_value": __emval_take_value, "abort": _abort, "abs": _abs, "clock_gettime": _clock_gettime, "emscripten_get_sbrk_ptr": _emscripten_get_sbrk_ptr, "emscripten_memcpy_big": _emscripten_memcpy_big, "emscripten_resize_heap": _emscripten_resize_heap, "fd_write": _fd_write, "gettimeofday": _gettimeofday, "memory": wasmMemory, "nanosleep": _nanosleep, "pthread_attr_destroy": _pthread_attr_destroy, "pthread_attr_init": _pthread_attr_init, "pthread_attr_setstacksize": _pthread_attr_setstacksize, "pthread_cancel": _pthread_cancel, "pthread_create": _pthread_create, "pthread_exit": _pthread_exit, "pthread_join": _pthread_join, "pthread_mutexattr_destroy": _pthread_mutexattr_destroy, "pthread_mutexattr_init": _pthread_mutexattr_init, "pthread_mutexattr_setprotocol": _pthread_mutexattr_setprotocol, "pthread_mutexattr_settype": _pthread_mutexattr_settype, "setTempRet0": _setTempRet0, "table": wasmTable };
var asm = createWasm();
Module["asm"] = asm;
/** @type {function(...*):?} */
var ___wasm_call_ctors = Module["___wasm_call_ctors"] = function() {
return (___wasm_call_ctors = Module["___wasm_call_ctors"] = Module["asm"]["__wasm_call_ctors"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var _free = Module["_free"] = function() {
return (_free = Module["_free"] = Module["asm"]["free"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var _memcpy = Module["_memcpy"] = function() {
return (_memcpy = Module["_memcpy"] = Module["asm"]["memcpy"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var ___getTypeName = Module["___getTypeName"] = function() {
return (___getTypeName = Module["___getTypeName"] = Module["asm"]["__getTypeName"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var ___embind_register_native_and_builtin_types = Module["___embind_register_native_and_builtin_types"] = function() {
return (___embind_register_native_and_builtin_types = Module["___embind_register_native_and_builtin_types"] = Module["asm"]["__embind_register_native_and_builtin_types"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var ___errno_location = Module["___errno_location"] = function() {
return (___errno_location = Module["___errno_location"] = Module["asm"]["__errno_location"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var _htonl = Module["_htonl"] = function() {
return (_htonl = Module["_htonl"] = Module["asm"]["htonl"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var _htons = Module["_htons"] = function() {
return (_htons = Module["_htons"] = Module["asm"]["htons"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var _ntohs = Module["_ntohs"] = function() {
return (_ntohs = Module["_ntohs"] = Module["asm"]["ntohs"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var _malloc = Module["_malloc"] = function() {
return (_malloc = Module["_malloc"] = Module["asm"]["malloc"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var _emscripten_main_thread_process_queued_calls = Module["_emscripten_main_thread_process_queued_calls"] = function() {
return (_emscripten_main_thread_process_queued_calls = Module["_emscripten_main_thread_process_queued_calls"] = Module["asm"]["emscripten_main_thread_process_queued_calls"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var stackSave = Module["stackSave"] = function() {
return (stackSave = Module["stackSave"] = Module["asm"]["stackSave"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var stackAlloc = Module["stackAlloc"] = function() {
return (stackAlloc = Module["stackAlloc"] = Module["asm"]["stackAlloc"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var stackRestore = Module["stackRestore"] = function() {
return (stackRestore = Module["stackRestore"] = Module["asm"]["stackRestore"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var __growWasmMemory = Module["__growWasmMemory"] = function() {
return (__growWasmMemory = Module["__growWasmMemory"] = Module["asm"]["__growWasmMemory"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_vi = Module["dynCall_vi"] = function() {
return (dynCall_vi = Module["dynCall_vi"] = Module["asm"]["dynCall_vi"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_viiiiiiii = Module["dynCall_viiiiiiii"] = function() {
return (dynCall_viiiiiiii = Module["dynCall_viiiiiiii"] = Module["asm"]["dynCall_viiiiiiii"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_iiii = Module["dynCall_iiii"] = function() {
return (dynCall_iiii = Module["dynCall_iiii"] = Module["asm"]["dynCall_iiii"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_iii = Module["dynCall_iii"] = function() {
return (dynCall_iii = Module["dynCall_iii"] = Module["asm"]["dynCall_iii"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_ii = Module["dynCall_ii"] = function() {
return (dynCall_ii = Module["dynCall_ii"] = Module["asm"]["dynCall_ii"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_iiiiii = Module["dynCall_iiiiii"] = function() {
return (dynCall_iiiiii = Module["dynCall_iiiiii"] = Module["asm"]["dynCall_iiiiii"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_viii = Module["dynCall_viii"] = function() {
return (dynCall_viii = Module["dynCall_viii"] = Module["asm"]["dynCall_viii"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_fii = Module["dynCall_fii"] = function() {
return (dynCall_fii = Module["dynCall_fii"] = Module["asm"]["dynCall_fii"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_viif = Module["dynCall_viif"] = function() {
return (dynCall_viif = Module["dynCall_viif"] = Module["asm"]["dynCall_viif"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_iiiii = Module["dynCall_iiiii"] = function() {
return (dynCall_iiiii = Module["dynCall_iiiii"] = Module["asm"]["dynCall_iiiii"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_i = Module["dynCall_i"] = function() {
return (dynCall_i = Module["dynCall_i"] = Module["asm"]["dynCall_i"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_iiiiiii = Module["dynCall_iiiiiii"] = function() {
return (dynCall_iiiiiii = Module["dynCall_iiiiiii"] = Module["asm"]["dynCall_iiiiiii"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_vii = Module["dynCall_vii"] = function() {
return (dynCall_vii = Module["dynCall_vii"] = Module["asm"]["dynCall_vii"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_iiff = Module["dynCall_iiff"] = function() {
return (dynCall_iiff = Module["dynCall_iiff"] = Module["asm"]["dynCall_iiff"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_iifff = Module["dynCall_iifff"] = function() {
return (dynCall_iifff = Module["dynCall_iifff"] = Module["asm"]["dynCall_iifff"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_iiiff = Module["dynCall_iiiff"] = function() {
return (dynCall_iiiff = Module["dynCall_iiiff"] = Module["asm"]["dynCall_iiiff"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_iiifff = Module["dynCall_iiifff"] = function() {
return (dynCall_iiifff = Module["dynCall_iiifff"] = Module["asm"]["dynCall_iiifff"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_viiii = Module["dynCall_viiii"] = function() {
return (dynCall_viiii = Module["dynCall_viiii"] = Module["asm"]["dynCall_viiii"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_viiff = Module["dynCall_viiff"] = function() {
return (dynCall_viiff = Module["dynCall_viiff"] = Module["asm"]["dynCall_viiff"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_viifi = Module["dynCall_viifi"] = function() {
return (dynCall_viifi = Module["dynCall_viifi"] = Module["asm"]["dynCall_viifi"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_iifffi = Module["dynCall_iifffi"] = function() {
return (dynCall_iifffi = Module["dynCall_iifffi"] = Module["asm"]["dynCall_iifffi"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_viiiii = Module["dynCall_viiiii"] = function() {
return (dynCall_viiiii = Module["dynCall_viiiii"] = Module["asm"]["dynCall_viiiii"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_iiiiifi = Module["dynCall_iiiiifi"] = function() {
return (dynCall_iiiiifi = Module["dynCall_iiiiifi"] = Module["asm"]["dynCall_iiiiifi"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_iiiiifiiiii = Module["dynCall_iiiiifiiiii"] = function() {
return (dynCall_iiiiifiiiii = Module["dynCall_iiiiifiiiii"] = Module["asm"]["dynCall_iiiiifiiiii"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_iiiiifiiii = Module["dynCall_iiiiifiiii"] = function() {
return (dynCall_iiiiifiiii = Module["dynCall_iiiiifiiii"] = Module["asm"]["dynCall_iiiiifiiii"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_iiiiifiiiiii = Module["dynCall_iiiiifiiiiii"] = function() {
return (dynCall_iiiiifiiiiii = Module["dynCall_iiiiifiiiiii"] = Module["asm"]["dynCall_iiiiifiiiiii"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_iiiiiifiiiiif = Module["dynCall_iiiiiifiiiiif"] = function() {
return (dynCall_iiiiiifiiiiif = Module["dynCall_iiiiiifiiiiif"] = Module["asm"]["dynCall_iiiiiifiiiiif"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_iiiiiifiiiiiif = Module["dynCall_iiiiiifiiiiiif"] = function() {
return (dynCall_iiiiiifiiiiiif = Module["dynCall_iiiiiifiiiiiif"] = Module["asm"]["dynCall_iiiiiifiiiiiif"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_iiiif = Module["dynCall_iiiif"] = function() {
return (dynCall_iiiif = Module["dynCall_iiiif"] = Module["asm"]["dynCall_iiiif"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_iiiiiiiii = Module["dynCall_iiiiiiiii"] = function() {
return (dynCall_iiiiiiiii = Module["dynCall_iiiiiiiii"] = Module["asm"]["dynCall_iiiiiiiii"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_iiif = Module["dynCall_iiif"] = function() {
return (dynCall_iiif = Module["dynCall_iiif"] = Module["asm"]["dynCall_iiif"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_iif = Module["dynCall_iif"] = function() {
return (dynCall_iif = Module["dynCall_iif"] = Module["asm"]["dynCall_iif"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_iiiifff = Module["dynCall_iiiifff"] = function() {
return (dynCall_iiiifff = Module["dynCall_iiiifff"] = Module["asm"]["dynCall_iiiifff"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_iiffff = Module["dynCall_iiffff"] = function() {
return (dynCall_iiffff = Module["dynCall_iiffff"] = Module["asm"]["dynCall_iiffff"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_viiif = Module["dynCall_viiif"] = function() {
return (dynCall_viiif = Module["dynCall_viiif"] = Module["asm"]["dynCall_viiif"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_iiiiffii = Module["dynCall_iiiiffii"] = function() {
return (dynCall_iiiiffii = Module["dynCall_iiiiffii"] = Module["asm"]["dynCall_iiiiffii"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_vifi = Module["dynCall_vifi"] = function() {
return (dynCall_vifi = Module["dynCall_vifi"] = Module["asm"]["dynCall_vifi"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_iiiifi = Module["dynCall_iiiifi"] = function() {
return (dynCall_iiiifi = Module["dynCall_iiiifi"] = Module["asm"]["dynCall_iiiifi"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_iiiifiiiii = Module["dynCall_iiiifiiiii"] = function() {
return (dynCall_iiiifiiiii = Module["dynCall_iiiifiiiii"] = Module["asm"]["dynCall_iiiifiiiii"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_iiiifiiii = Module["dynCall_iiiifiiii"] = function() {
return (dynCall_iiiifiiii = Module["dynCall_iiiifiiii"] = Module["asm"]["dynCall_iiiifiiii"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_iiiifiiiiii = Module["dynCall_iiiifiiiiii"] = function() {
return (dynCall_iiiifiiiiii = Module["dynCall_iiiifiiiiii"] = Module["asm"]["dynCall_iiiifiiiiii"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_iiiiifiiiiif = Module["dynCall_iiiiifiiiiif"] = function() {
return (dynCall_iiiiifiiiiif = Module["dynCall_iiiiifiiiiif"] = Module["asm"]["dynCall_iiiiifiiiiif"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_iiiiifiiiiiif = Module["dynCall_iiiiifiiiiiif"] = function() {
return (dynCall_iiiiifiiiiiif = Module["dynCall_iiiiifiiiiiif"] = Module["asm"]["dynCall_iiiiifiiiiiif"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_iiiiiiii = Module["dynCall_iiiiiiii"] = function() {
return (dynCall_iiiiiiii = Module["dynCall_iiiiiiii"] = Module["asm"]["dynCall_iiiiiiii"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_vif = Module["dynCall_vif"] = function() {
return (dynCall_vif = Module["dynCall_vif"] = Module["asm"]["dynCall_vif"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_iiiffii = Module["dynCall_iiiffii"] = function() {
return (dynCall_iiiffii = Module["dynCall_iiiffii"] = Module["asm"]["dynCall_iiiffii"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_v = Module["dynCall_v"] = function() {
return (dynCall_v = Module["dynCall_v"] = Module["asm"]["dynCall_v"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_vifiiii = Module["dynCall_vifiiii"] = function() {
return (dynCall_vifiiii = Module["dynCall_vifiiii"] = Module["asm"]["dynCall_vifiiii"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_vifii = Module["dynCall_vifii"] = function() {
return (dynCall_vifii = Module["dynCall_vifii"] = Module["asm"]["dynCall_vifii"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_viiiiii = Module["dynCall_viiiiii"] = function() {
return (dynCall_viiiiii = Module["dynCall_viiiiii"] = Module["asm"]["dynCall_viiiiii"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_iiiifffffi = Module["dynCall_iiiifffffi"] = function() {
return (dynCall_iiiifffffi = Module["dynCall_iiiifffffi"] = Module["asm"]["dynCall_iiiifffffi"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_viiiiiiiiii = Module["dynCall_viiiiiiiiii"] = function() {
return (dynCall_viiiiiiiiii = Module["dynCall_viiiiiiiiii"] = Module["asm"]["dynCall_viiiiiiiiii"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_viiiiiiiiiiifii = Module["dynCall_viiiiiiiiiiifii"] = function() {
return (dynCall_viiiiiiiiiiifii = Module["dynCall_viiiiiiiiiiifii"] = Module["asm"]["dynCall_viiiiiiiiiiifii"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_iifiiiijii = Module["dynCall_iifiiiijii"] = function() {
return (dynCall_iifiiiijii = Module["dynCall_iifiiiijii"] = Module["asm"]["dynCall_iifiiiijii"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_vifijii = Module["dynCall_vifijii"] = function() {
return (dynCall_vifijii = Module["dynCall_vifijii"] = Module["asm"]["dynCall_vifijii"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_iiiifffiii = Module["dynCall_iiiifffiii"] = function() {
return (dynCall_iiiifffiii = Module["dynCall_iiiifffiii"] = Module["asm"]["dynCall_iiiifffiii"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_viiiiiiiii = Module["dynCall_viiiiiiiii"] = function() {
return (dynCall_viiiiiiiii = Module["dynCall_viiiiiiiii"] = Module["asm"]["dynCall_viiiiiiiii"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_viffiiiif = Module["dynCall_viffiiiif"] = function() {
return (dynCall_viffiiiif = Module["dynCall_viffiiiif"] = Module["asm"]["dynCall_viffiiiif"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_viffiifffffiii = Module["dynCall_viffiifffffiii"] = function() {
return (dynCall_viffiifffffiii = Module["dynCall_viffiifffffiii"] = Module["asm"]["dynCall_viffiifffffiii"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_viffffiifffiiiiif = Module["dynCall_viffffiifffiiiiif"] = function() {
return (dynCall_viffffiifffiiiiif = Module["dynCall_viffffiifffiiiiif"] = Module["asm"]["dynCall_viffffiifffiiiiif"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_iiiifffffii = Module["dynCall_iiiifffffii"] = function() {
return (dynCall_iiiifffffii = Module["dynCall_iiiifffffii"] = Module["asm"]["dynCall_iiiifffffii"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_viiifi = Module["dynCall_viiifi"] = function() {
return (dynCall_viiifi = Module["dynCall_viiifi"] = Module["asm"]["dynCall_viiifi"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_viiffi = Module["dynCall_viiffi"] = function() {
return (dynCall_viiffi = Module["dynCall_viiffi"] = Module["asm"]["dynCall_viiffi"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_viiiffi = Module["dynCall_viiiffi"] = function() {
return (dynCall_viiiffi = Module["dynCall_viiiffi"] = Module["asm"]["dynCall_viiiffi"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_viiiiiii = Module["dynCall_viiiiiii"] = function() {
return (dynCall_viiiiiii = Module["dynCall_viiiiiii"] = Module["asm"]["dynCall_viiiiiii"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_fi = Module["dynCall_fi"] = function() {
return (dynCall_fi = Module["dynCall_fi"] = Module["asm"]["dynCall_fi"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_viff = Module["dynCall_viff"] = function() {
return (dynCall_viff = Module["dynCall_viff"] = Module["asm"]["dynCall_viff"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_iifi = Module["dynCall_iifi"] = function() {
return (dynCall_iifi = Module["dynCall_iifi"] = Module["asm"]["dynCall_iifi"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_viifffi = Module["dynCall_viifffi"] = function() {
return (dynCall_viifffi = Module["dynCall_viifffi"] = Module["asm"]["dynCall_viifffi"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_viiifiiiii = Module["dynCall_viiifiiiii"] = function() {
return (dynCall_viiifiiiii = Module["dynCall_viiifiiiii"] = Module["asm"]["dynCall_viiifiiiii"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_viiiifiiiiif = Module["dynCall_viiiifiiiiif"] = function() {
return (dynCall_viiiifiiiiif = Module["dynCall_viiiifiiiiif"] = Module["asm"]["dynCall_viiiifiiiiif"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_iiiiifiii = Module["dynCall_iiiiifiii"] = function() {
return (dynCall_iiiiifiii = Module["dynCall_iiiiifiii"] = Module["asm"]["dynCall_iiiiifiii"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_iiiiiifiii = Module["dynCall_iiiiiifiii"] = function() {
return (dynCall_iiiiiifiii = Module["dynCall_iiiiiifiii"] = Module["asm"]["dynCall_iiiiiifiii"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_iiiiiiifiif = Module["dynCall_iiiiiiifiif"] = function() {
return (dynCall_iiiiiiifiif = Module["dynCall_iiiiiiifiif"] = Module["asm"]["dynCall_iiiiiiifiif"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_iiiiiifiif = Module["dynCall_iiiiiifiif"] = function() {
return (dynCall_iiiiiifiif = Module["dynCall_iiiiiifiif"] = Module["asm"]["dynCall_iiiiiifiif"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_iiiifii = Module["dynCall_iiiifii"] = function() {
return (dynCall_iiiifii = Module["dynCall_iiiifii"] = Module["asm"]["dynCall_iiiifii"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_fiiiiiifiifif = Module["dynCall_fiiiiiifiifif"] = function() {
return (dynCall_fiiiiiifiifif = Module["dynCall_fiiiiiifiifif"] = Module["asm"]["dynCall_fiiiiiifiifif"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_fiiiiiifiiiif = Module["dynCall_fiiiiiifiiiif"] = function() {
return (dynCall_fiiiiiifiiiif = Module["dynCall_fiiiiiifiiiif"] = Module["asm"]["dynCall_fiiiiiifiiiif"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_fiff = Module["dynCall_fiff"] = function() {
return (dynCall_fiff = Module["dynCall_fiff"] = Module["asm"]["dynCall_fiff"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_viiifii = Module["dynCall_viiifii"] = function() {
return (dynCall_viiifii = Module["dynCall_viiifii"] = Module["asm"]["dynCall_viiifii"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_iiiiiiiiiii = Module["dynCall_iiiiiiiiiii"] = function() {
return (dynCall_iiiiiiiiiii = Module["dynCall_iiiiiiiiiii"] = Module["asm"]["dynCall_iiiiiiiiiii"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_iiiiiiiiii = Module["dynCall_iiiiiiiiii"] = function() {
return (dynCall_iiiiiiiiii = Module["dynCall_iiiiiiiiii"] = Module["asm"]["dynCall_iiiiiiiiii"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_viiiffii = Module["dynCall_viiiffii"] = function() {
return (dynCall_viiiffii = Module["dynCall_viiiffii"] = Module["asm"]["dynCall_viiiffii"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_viij = Module["dynCall_viij"] = function() {
return (dynCall_viij = Module["dynCall_viij"] = Module["asm"]["dynCall_viij"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_viiji = Module["dynCall_viiji"] = function() {
return (dynCall_viiji = Module["dynCall_viiji"] = Module["asm"]["dynCall_viiji"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_viijijj = Module["dynCall_viijijj"] = function() {
return (dynCall_viijijj = Module["dynCall_viijijj"] = Module["asm"]["dynCall_viijijj"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_viijj = Module["dynCall_viijj"] = function() {
return (dynCall_viijj = Module["dynCall_viijj"] = Module["asm"]["dynCall_viijj"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_iiiij = Module["dynCall_iiiij"] = function() {
return (dynCall_iiiij = Module["dynCall_iiiij"] = Module["asm"]["dynCall_iiiij"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_viiiij = Module["dynCall_viiiij"] = function() {
return (dynCall_viiiij = Module["dynCall_viiiij"] = Module["asm"]["dynCall_viiiij"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_ji = Module["dynCall_ji"] = function() {
return (dynCall_ji = Module["dynCall_ji"] = Module["asm"]["dynCall_ji"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_iidiiii = Module["dynCall_iidiiii"] = function() {
return (dynCall_iidiiii = Module["dynCall_iidiiii"] = Module["asm"]["dynCall_iidiiii"]).apply(null, arguments);
};
/** @type {function(...*):?} */
var dynCall_jiji = Module["dynCall_jiji"] = function() {
return (dynCall_jiji = Module["dynCall_jiji"] = Module["asm"]["dynCall_jiji"]).apply(null, arguments);
};
/**
* @license
* Copyright 2010 The Emscripten Authors
* SPDX-License-Identifier: MIT
*/
// === Auto-generated postamble setup entry stuff ===
Module['asm'] = asm;
var calledRun;
/**
* @constructor
* @this {ExitStatus}
*/
function ExitStatus(status) {
this.name = "ExitStatus";
this.message = "Program terminated with exit(" + status + ")";
this.status = status;
}
var calledMain = false;
dependenciesFulfilled = function runCaller() {
// If run has never been called, and we should call run (INVOKE_RUN is true, and Module.noInitialRun is not false)
if (!calledRun) run();
if (!calledRun) dependenciesFulfilled = runCaller; // try this again later, after new deps are fulfilled
};
/** @type {function(Array=)} */
function run(args) {
args = args || arguments_;
if (runDependencies > 0) {
return;
}
preRun();
if (runDependencies > 0) return; // a preRun added a dependency, run will be called later
function doRun() {
// run may have just been called through dependencies being fulfilled just in this very frame,
// or while the async setStatus time below was happening
if (calledRun) return;
calledRun = true;
Module['calledRun'] = true;
if (ABORT) return;
initRuntime();
preMain();
readyPromiseResolve(Module);
if (Module['onRuntimeInitialized']) Module['onRuntimeInitialized']();
postRun();
}
if (Module['setStatus']) {
Module['setStatus']('Running...');
setTimeout(function() {
setTimeout(function() {
Module['setStatus']('');
}, 1);
doRun();
}, 1);
} else
{
doRun();
}
}
Module['run'] = run;
/** @param {boolean|number=} implicit */
function exit(status, implicit) {
// if this is just main exit-ing implicitly, and the status is 0, then we
// don't need to do anything here and can just leave. if the status is
// non-zero, though, then we need to report it.
// (we may have warned about this earlier, if a situation justifies doing so)
if (implicit && noExitRuntime && status === 0) {
return;
}
if (noExitRuntime) {
} else {
ABORT = true;
EXITSTATUS = status;
exitRuntime();
if (Module['onExit']) Module['onExit'](status);
}
quit_(status, new ExitStatus(status));
}
if (Module['preInit']) {
if (typeof Module['preInit'] == 'function') Module['preInit'] = [Module['preInit']];
while (Module['preInit'].length > 0) {
Module['preInit'].pop()();
}
}
noExitRuntime = true;
run();
// {{MODULE_ADDITIONS}}
return PHYSX.ready
}
);
})();
if (typeof exports === 'object' && typeof module === 'object')
module.exports = PHYSX;
else if (typeof define === 'function' && define['amd'])
define([], function() { return PHYSX; });
else if (typeof exports === 'object')
exports["PHYSX"] = PHYSX;