159 lines
7.3 KiB
C++
159 lines
7.3 KiB
C++
#pragma once
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// The MIT License (MIT)
|
|
//
|
|
// Copyright (c) 2018 Nicholas Frechette & Animation Compression Library contributors
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
// of this software and associated documentation files (the "Software"), to deal
|
|
// in the Software without restriction, including without limitation the rights
|
|
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
// copies of the Software, and to permit persons to whom the Software is
|
|
// furnished to do so, subject to the following conditions:
|
|
//
|
|
// The above copyright notice and this permission notice shall be included in all
|
|
// copies or substantial portions of the Software.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
// SOFTWARE.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include "acl/core/error.h"
|
|
#include "acl/core/impl/compiler_utils.h"
|
|
|
|
#include <rtm/scalarf.h>
|
|
|
|
#include <cstdint>
|
|
#include <algorithm>
|
|
|
|
ACL_IMPL_FILE_PRAGMA_PUSH
|
|
|
|
namespace acl
|
|
{
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// This enum dictates how interpolation samples are calculated based on the sample time.
|
|
enum class sample_rounding_policy
|
|
{
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// If the sample time lies between two samples, both sample indices
|
|
// are returned and the interpolation alpha lies in between.
|
|
none,
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// If the sample time lies between two samples, both sample indices
|
|
// are returned and the interpolation will be 0.0.
|
|
floor,
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// If the sample time lies between two samples, both sample indices
|
|
// are returned and the interpolation will be 1.0.
|
|
ceil,
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// If the sample time lies between two samples, both sample indices
|
|
// are returned and the interpolation will be 0.0 or 1.0 depending
|
|
// on which sample is nearest.
|
|
nearest,
|
|
};
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// Calculates the sample indices and the interpolation required to linearly
|
|
// interpolate when the samples are uniform.
|
|
// The returned sample indices are clamped and do not loop.
|
|
// If the sample rate is available, prefer using find_linear_interpolation_samples_with_sample_rate
|
|
// instead. It is faster and more accurate.
|
|
inline void find_linear_interpolation_samples_with_duration(uint32_t num_samples, float duration, float sample_time, sample_rounding_policy rounding_policy,
|
|
uint32_t& out_sample_index0, uint32_t& out_sample_index1, float& out_interpolation_alpha)
|
|
{
|
|
// Samples are evenly spaced, trivially calculate the indices that we need
|
|
ACL_ASSERT(duration >= 0.0F, "Invalid duration: %f", duration);
|
|
ACL_ASSERT(sample_time >= 0.0F && sample_time <= duration, "Invalid sample time: 0.0 <= %f <= %f", sample_time, duration);
|
|
ACL_ASSERT(num_samples > 0, "Invalid num_samples: %u", num_samples);
|
|
|
|
const float sample_rate = duration == 0.0F ? 0.0F : (float(num_samples - 1) / duration);
|
|
ACL_ASSERT(sample_rate >= 0.0F && rtm::scalar_is_finite(sample_rate), "Invalid sample_rate: %f", sample_rate);
|
|
|
|
const float sample_index = sample_time * sample_rate;
|
|
const uint32_t sample_index0 = static_cast<uint32_t>(sample_index);
|
|
const uint32_t sample_index1 = std::min(sample_index0 + 1, num_samples - 1);
|
|
ACL_ASSERT(sample_index0 <= sample_index1 && sample_index1 < num_samples, "Invalid sample indices: 0 <= %u <= %u < %u", sample_index0, sample_index1, num_samples);
|
|
|
|
const float interpolation_alpha = sample_index - float(sample_index0);
|
|
ACL_ASSERT(interpolation_alpha >= 0.0F && interpolation_alpha <= 1.0F, "Invalid interpolation alpha: 0.0 <= %f <= 1.0", interpolation_alpha);
|
|
|
|
out_sample_index0 = sample_index0;
|
|
out_sample_index1 = sample_index1;
|
|
|
|
switch (rounding_policy)
|
|
{
|
|
default:
|
|
case sample_rounding_policy::none:
|
|
out_interpolation_alpha = interpolation_alpha;
|
|
break;
|
|
case sample_rounding_policy::floor:
|
|
out_interpolation_alpha = 0.0F;
|
|
break;
|
|
case sample_rounding_policy::ceil:
|
|
out_interpolation_alpha = 1.0F;
|
|
break;
|
|
case sample_rounding_policy::nearest:
|
|
out_interpolation_alpha = rtm::scalar_floor(interpolation_alpha + 0.5F);
|
|
break;
|
|
}
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// Calculates the sample indices and the interpolation required to linearly
|
|
// interpolate when the samples are uniform.
|
|
// The returned sample indices are clamped and do not loop.
|
|
inline void find_linear_interpolation_samples_with_sample_rate(uint32_t num_samples, float sample_rate, float sample_time, sample_rounding_policy rounding_policy,
|
|
uint32_t& out_sample_index0, uint32_t& out_sample_index1, float& out_interpolation_alpha)
|
|
{
|
|
// Samples are evenly spaced, trivially calculate the indices that we need
|
|
ACL_ASSERT(sample_rate >= 0.0F, "Invalid sample rate: %f", sample_rate);
|
|
ACL_ASSERT(num_samples > 0, "Invalid num_samples: %u", num_samples);
|
|
|
|
// TODO: Would it be faster to do the index calculation entirely with floating point?
|
|
// SSE4 can floor with a single instruction.
|
|
// We don't need the index1, there are no dependencies there, we can still convert the float index0 into an integer, do the min.
|
|
// This would break the dependency chains, right now the index0 depends on sample_index and interpolation_alpha depends on index0.
|
|
// Generating index0 is slow, and converting it back to float is slow.
|
|
// If we keep index0 as a float and floor it as a float, we can calculate index1 at the same time as the interpolation alpha.
|
|
const float sample_index = sample_time * sample_rate;
|
|
const uint32_t sample_index0 = static_cast<uint32_t>(sample_index);
|
|
const uint32_t sample_index1 = std::min(sample_index0 + 1, num_samples - 1);
|
|
ACL_ASSERT(sample_index0 <= sample_index1 && sample_index1 < num_samples, "Invalid sample indices: 0 <= %u <= %u < %u", sample_index0, sample_index1, num_samples);
|
|
|
|
const float interpolation_alpha = sample_index - float(sample_index0);
|
|
ACL_ASSERT(interpolation_alpha >= 0.0F && interpolation_alpha <= 1.0F, "Invalid interpolation alpha: 0.0 <= %f <= 1.0", interpolation_alpha);
|
|
|
|
out_sample_index0 = sample_index0;
|
|
out_sample_index1 = sample_index1;
|
|
|
|
switch (rounding_policy)
|
|
{
|
|
default:
|
|
case sample_rounding_policy::none:
|
|
out_interpolation_alpha = interpolation_alpha;
|
|
break;
|
|
case sample_rounding_policy::floor:
|
|
out_interpolation_alpha = 0.0F;
|
|
break;
|
|
case sample_rounding_policy::ceil:
|
|
out_interpolation_alpha = 1.0F;
|
|
break;
|
|
case sample_rounding_policy::nearest:
|
|
out_interpolation_alpha = rtm::scalar_floor(interpolation_alpha + 0.5F);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
ACL_IMPL_FILE_PRAGMA_POP
|