cocos-engine-external/sources/rtm/impl/mask_common.h

261 lines
10 KiB
C++

#pragma once
////////////////////////////////////////////////////////////////////////////////
// The MIT License (MIT)
//
// Copyright (c) 2019 Nicholas Frechette & Realtime Math contributors
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
////////////////////////////////////////////////////////////////////////////////
#include "rtm/math.h"
#include "rtm/impl/compiler_utils.h"
RTM_IMPL_FILE_PRAGMA_PUSH
namespace rtm
{
namespace rtm_impl
{
//////////////////////////////////////////////////////////////////////////
// This is a helper struct to allow a single consistent API between
// various vector types when the semantics are identical but the return
// type differs. Implicit coercion is used to return the desired value
// at the call site.
//////////////////////////////////////////////////////////////////////////
struct mask4_bool_set
{
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE RTM_SIMD_CALL operator mask4d() const RTM_NO_EXCEPT
{
#if defined(RTM_SSE2_INTRINSICS)
const uint64_t x_mask = x ? 0xFFFFFFFFFFFFFFFFULL : 0;
const uint64_t y_mask = y ? 0xFFFFFFFFFFFFFFFFULL : 0;
const uint64_t z_mask = z ? 0xFFFFFFFFFFFFFFFFULL : 0;
const uint64_t w_mask = w ? 0xFFFFFFFFFFFFFFFFULL : 0;
return mask4d{ _mm_castsi128_pd(_mm_set_epi64x(y_mask, x_mask)), _mm_castsi128_pd(_mm_set_epi64x(w_mask, z_mask)) };
#else
const uint64_t x_mask = x ? 0xFFFFFFFFFFFFFFFFULL : 0;
const uint64_t y_mask = y ? 0xFFFFFFFFFFFFFFFFULL : 0;
const uint64_t z_mask = z ? 0xFFFFFFFFFFFFFFFFULL : 0;
const uint64_t w_mask = w ? 0xFFFFFFFFFFFFFFFFULL : 0;
return mask4d{ x_mask, y_mask, z_mask, w_mask };
#endif
}
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE RTM_SIMD_CALL operator mask4q() const RTM_NO_EXCEPT
{
#if defined(RTM_SSE2_INTRINSICS)
const uint64_t x_mask = x ? 0xFFFFFFFFFFFFFFFFULL : 0;
const uint64_t y_mask = y ? 0xFFFFFFFFFFFFFFFFULL : 0;
const uint64_t z_mask = z ? 0xFFFFFFFFFFFFFFFFULL : 0;
const uint64_t w_mask = w ? 0xFFFFFFFFFFFFFFFFULL : 0;
return mask4q{ _mm_set_epi64x(y_mask, x_mask), _mm_set_epi64x(w_mask, z_mask) };
#else
const uint64_t x_mask = x ? 0xFFFFFFFFFFFFFFFFULL : 0;
const uint64_t y_mask = y ? 0xFFFFFFFFFFFFFFFFULL : 0;
const uint64_t z_mask = z ? 0xFFFFFFFFFFFFFFFFULL : 0;
const uint64_t w_mask = w ? 0xFFFFFFFFFFFFFFFFULL : 0;
return mask4q{ x_mask, y_mask, z_mask, w_mask };
#endif
}
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE RTM_SIMD_CALL operator mask4f() const RTM_NO_EXCEPT
{
const uint32_t x_mask = x ? 0xFFFFFFFFU : 0;
const uint32_t y_mask = y ? 0xFFFFFFFFU : 0;
const uint32_t z_mask = z ? 0xFFFFFFFFU : 0;
const uint32_t w_mask = w ? 0xFFFFFFFFU : 0;
#if defined(RTM_SSE2_INTRINSICS)
return _mm_castsi128_ps(_mm_set_epi32(w_mask, z_mask, y_mask, x_mask));
#elif defined(RTM_NEON_INTRINSICS)
float32x2_t V0 = vcreate_f32(((uint64_t)x_mask) | ((uint64_t)(y_mask) << 32));
float32x2_t V1 = vcreate_f32(((uint64_t)z_mask) | ((uint64_t)(w_mask) << 32));
return vcombine_f32(V0, V1);
#else
return mask4f{ x_mask, y_mask, z_mask, w_mask };
#endif
}
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE RTM_SIMD_CALL operator mask4i() const RTM_NO_EXCEPT
{
const uint32_t x_mask = x ? 0xFFFFFFFFU : 0;
const uint32_t y_mask = y ? 0xFFFFFFFFU : 0;
const uint32_t z_mask = z ? 0xFFFFFFFFU : 0;
const uint32_t w_mask = w ? 0xFFFFFFFFU : 0;
#if defined(RTM_SSE2_INTRINSICS)
return _mm_set_epi32(w_mask, z_mask, y_mask, x_mask);
#elif defined(RTM_NEON_INTRINSICS)
float32x2_t V0 = vcreate_f32(((uint64_t)x_mask) | ((uint64_t)(y_mask) << 32));
float32x2_t V1 = vcreate_f32(((uint64_t)z_mask) | ((uint64_t)(w_mask) << 32));
return RTM_IMPL_MASK4i_SET(vcombine_f32(V0, V1));
#else
return mask4i{ x_mask, y_mask, z_mask, w_mask };
#endif
}
bool x;
bool y;
bool z;
bool w;
};
}
//////////////////////////////////////////////////////////////////////////
// Creates a mask4 from all 4 bool components.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE constexpr rtm_impl::mask4_bool_set RTM_SIMD_CALL mask_set(bool x, bool y, bool z, bool w) RTM_NO_EXCEPT
{
return rtm_impl::mask4_bool_set{ x, y, z, w };
}
namespace rtm_impl
{
//////////////////////////////////////////////////////////////////////////
// This is a helper struct to allow a single consistent API between
// various vector types when the semantics are identical but the return
// type differs. Implicit coercion is used to return the desired value
// at the call site.
//////////////////////////////////////////////////////////////////////////
struct mask4_uint32_set
{
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE RTM_SIMD_CALL operator mask4f() const RTM_NO_EXCEPT
{
#if defined(RTM_SSE2_INTRINSICS)
return _mm_castsi128_ps(_mm_set_epi32(w, z, y, x));
#elif defined(RTM_NEON_INTRINSICS)
float32x2_t V0 = vcreate_f32(((uint64_t)x) | ((uint64_t)(y) << 32));
float32x2_t V1 = vcreate_f32(((uint64_t)z) | ((uint64_t)(w) << 32));
return vcombine_f32(V0, V1);
#else
return mask4f{ x, y, z, w };
#endif
}
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE RTM_SIMD_CALL operator mask4i() const RTM_NO_EXCEPT
{
#if defined(RTM_SSE2_INTRINSICS)
return _mm_set_epi32(w, z, y, x);
#elif defined(RTM_NEON_INTRINSICS)
float32x2_t V0 = vcreate_f32(((uint64_t)x) | ((uint64_t)(y) << 32));
float32x2_t V1 = vcreate_f32(((uint64_t)z) | ((uint64_t)(w) << 32));
return RTM_IMPL_MASK4i_SET(vcombine_f32(V0, V1));
#else
return mask4i{ x, y, z, w };
#endif
}
uint32_t x;
uint32_t y;
uint32_t z;
uint32_t w;
};
}
//////////////////////////////////////////////////////////////////////////
// Creates a mask4 from 4 uint32 components.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE constexpr rtm_impl::mask4_uint32_set RTM_SIMD_CALL mask_set(uint32_t x, uint32_t y, uint32_t z, uint32_t w) RTM_NO_EXCEPT
{
return rtm_impl::mask4_uint32_set{ x, y, z, w };
}
namespace rtm_impl
{
//////////////////////////////////////////////////////////////////////////
// This is a helper struct to allow a single consistent API between
// various vector types when the semantics are identical but the return
// type differs. Implicit coercion is used to return the desired value
// at the call site.
//////////////////////////////////////////////////////////////////////////
struct mask4_uint64_set
{
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE RTM_SIMD_CALL operator mask4d() const RTM_NO_EXCEPT
{
#if defined(RTM_SSE2_INTRINSICS)
//////////////////////////////////////////////////////////////////////////
// HACK ALERT!
// VS2015, VS2017, and VS2019 crash when compiling with _mm_set_epi64x() here.
// To work around this, we use alternative code. We assume that the high and low words
// are identical in the mask, which should be true.
// See: https://github.com/nfrechette/rtm/issues/84
//////////////////////////////////////////////////////////////////////////
#if defined(RTM_COMPILER_MSVC) && defined(_M_IX86) && !defined(NDEBUG)
const uint32_t x_mask = x ? 0xFFFFFFFFU : 0;
const uint32_t y_mask = y ? 0xFFFFFFFFU : 0;
const uint32_t z_mask = z ? 0xFFFFFFFFU : 0;
const uint32_t w_mask = w ? 0xFFFFFFFFU : 0;
return mask4d{ _mm_castsi128_pd(_mm_set_epi32(y_mask, y_mask, x_mask, x_mask)), _mm_castsi128_pd(_mm_set_epi32(w_mask, w_mask, z_mask, z_mask)) };
#else
return mask4d{ _mm_castsi128_pd(_mm_set_epi64x(y, x)), _mm_castsi128_pd(_mm_set_epi64x(w, z)) };
#endif
#else
return mask4d{ x, y, z, w };
#endif
}
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE RTM_SIMD_CALL operator mask4q() const RTM_NO_EXCEPT
{
#if defined(RTM_SSE2_INTRINSICS)
//////////////////////////////////////////////////////////////////////////
// HACK ALERT!
// VS2015, VS2017, and VS2019 crash when compiling with _mm_set_epi64x() here.
// To work around this, we use alternative code. We assume that the high and low words
// are identical in the mask, which should be true.
// See: https://github.com/nfrechette/rtm/issues/84
//////////////////////////////////////////////////////////////////////////
#if defined(RTM_COMPILER_MSVC) && defined(_M_IX86) && !defined(NDEBUG)
const uint32_t x_mask = x ? 0xFFFFFFFFU : 0;
const uint32_t y_mask = y ? 0xFFFFFFFFU : 0;
const uint32_t z_mask = z ? 0xFFFFFFFFU : 0;
const uint32_t w_mask = w ? 0xFFFFFFFFU : 0;
return mask4q{ _mm_set_epi32(y_mask, y_mask, x_mask, x_mask), _mm_set_epi32(w_mask, w_mask, z_mask, z_mask) };
#else
return mask4q{ _mm_set_epi64x(y, x), _mm_set_epi64x(w, z) };
#endif
#else
return mask4q{ x, y, z, w };
#endif
}
uint64_t x;
uint64_t y;
uint64_t z;
uint64_t w;
};
}
//////////////////////////////////////////////////////////////////////////
// Creates a mask4 from 4 uint64 components.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE constexpr rtm_impl::mask4_uint64_set RTM_SIMD_CALL mask_set(uint64_t x, uint64_t y, uint64_t z, uint64_t w) RTM_NO_EXCEPT
{
return rtm_impl::mask4_uint64_set{ x, y, z, w };
}
}
RTM_IMPL_FILE_PRAGMA_POP