cocos-engine-external/sources/rtm/scalarf.h

1484 lines
62 KiB
C++

#pragma once
////////////////////////////////////////////////////////////////////////////////
// The MIT License (MIT)
//
// Copyright (c) 2017 Nicholas Frechette & Animation Compression Library contributors
// Copyright (c) 2018 Nicholas Frechette & Realtime Math contributors
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
////////////////////////////////////////////////////////////////////////////////
#include "rtm/constants.h"
#include "rtm/math.h"
#include "rtm/impl/compiler_utils.h"
#include "rtm/impl/scalar_common.h"
#include <algorithm>
#include <cmath>
RTM_IMPL_FILE_PRAGMA_PUSH
namespace rtm
{
//////////////////////////////////////////////////////////////////////////
// Creates a scalar from a floating point value.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE scalarf RTM_SIMD_CALL scalar_set(float xyzw) RTM_NO_EXCEPT
{
#if defined(RTM_SSE2_INTRINSICS)
return scalarf{ _mm_set_ps1(xyzw) };
#else
return xyzw;
#endif
}
#if defined(RTM_SSE2_INTRINSICS)
//////////////////////////////////////////////////////////////////////////
// Writes a scalar to memory.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE void RTM_SIMD_CALL scalar_store(scalarf_arg0 input, float* output) RTM_NO_EXCEPT
{
_mm_store_ss(output, input.value);
}
#endif
//////////////////////////////////////////////////////////////////////////
// Writes a scalar to memory.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE void scalar_store(float input, float* output) RTM_NO_EXCEPT
{
*output = input;
}
//////////////////////////////////////////////////////////////////////////
// Casts a scalar into a floating point value.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE float RTM_SIMD_CALL scalar_cast(scalarf_arg0 input) RTM_NO_EXCEPT
{
#if defined(RTM_SSE2_INTRINSICS)
return _mm_cvtss_f32(input.value);
#else
return input;
#endif
}
#if defined(RTM_SSE2_INTRINSICS)
//////////////////////////////////////////////////////////////////////////
// Returns the largest integer value not greater than the input (round towards minus infinity).
// scalar_floor(1.8) = 1.0
// scalar_floor(-1.8) = -2.0
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE scalarf RTM_SIMD_CALL scalar_floor(scalarf_arg0 input) RTM_NO_EXCEPT
{
#if defined(RTM_SSE4_INTRINSICS)
return scalarf{ _mm_round_ss(input.value, input.value, 0x9) };
#else
// NaN, +- Infinity, and numbers larger or equal to 2^23 remain unchanged
// since they have no fractional part.
const __m128i abs_mask = _mm_set_epi32(0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL);
const __m128 fractional_limit = _mm_set_ps1(8388608.0F); // 2^23
// Build our mask, larger values that have no fractional part, and infinities will be true
// Smaller values and NaN will be false
__m128 abs_input = _mm_and_ps(input.value, _mm_castsi128_ps(abs_mask));
__m128 is_input_large = _mm_cmpge_ss(abs_input, fractional_limit);
// Test if our input is NaN with (value != value), it is only true for NaN
__m128 is_nan = _mm_cmpneq_ss(input.value, input.value);
// Combine our masks to determine if we should return the original value
__m128 use_original_input = _mm_or_ps(is_input_large, is_nan);
// Convert to an integer and back. This does banker's rounding by default
__m128 integer_part = _mm_cvtepi32_ps(_mm_cvtps_epi32(input.value));
// Test if the returned value is greater than the original.
// A negative input will round towards zero and be greater when we need it to be smaller.
__m128 is_negative = _mm_cmpgt_ss(integer_part, input.value);
// Convert our mask to a float, ~0 yields -1.0 since it is a valid signed integer
// Positive values will yield a 0.0 bias
__m128 bias = _mm_cvtepi32_ps(_mm_castps_si128(is_negative));
// Add our bias to properly handle negative values
integer_part = _mm_add_ss(integer_part, bias);
__m128 result = _mm_or_ps(_mm_and_ps(use_original_input, input.value), _mm_andnot_ps(use_original_input, integer_part));
return scalarf{ result };
#endif
}
#endif
//////////////////////////////////////////////////////////////////////////
// Returns the largest integer value not greater than the input (round towards negative infinity).
// scalar_floor(1.8) = 1.0
// scalar_floor(-1.8) = -2.0
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE float scalar_floor(float input) RTM_NO_EXCEPT
{
#if defined(RTM_SSE2_INTRINSICS)
return scalar_cast(scalar_floor(scalar_set(input)));
#else
return std::floor(input);
#endif
}
#if defined(RTM_SSE2_INTRINSICS)
//////////////////////////////////////////////////////////////////////////
// Returns the smallest integer value not less than the input (round towards positive infinity).
// scalar_ceil(1.8) = 2.0
// scalar_ceil(-1.8) = -1.0
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE scalarf RTM_SIMD_CALL scalar_ceil(scalarf_arg0 input) RTM_NO_EXCEPT
{
#if defined(RTM_SSE4_INTRINSICS)
return scalarf{ _mm_round_ss(input.value, input.value, 0xA) };
#else
// NaN, +- Infinity, and numbers larger or equal to 2^23 remain unchanged
// since they have no fractional part.
const __m128i abs_mask = _mm_set_epi32(0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL);
const __m128 fractional_limit = _mm_set_ps1(8388608.0F); // 2^23
// Build our mask, larger values that have no fractional part, and infinities will be true
// Smaller values and NaN will be false
__m128 abs_input = _mm_and_ps(input.value, _mm_castsi128_ps(abs_mask));
__m128 is_input_large = _mm_cmpge_ss(abs_input, fractional_limit);
// Test if our input is NaN with (value != value), it is only true for NaN
__m128 is_nan = _mm_cmpneq_ss(input.value, input.value);
// Combine our masks to determine if we should return the original value
__m128 use_original_input = _mm_or_ps(is_input_large, is_nan);
// Convert to an integer and back. This does banker's rounding by default
__m128 integer_part = _mm_cvtepi32_ps(_mm_cvtps_epi32(input.value));
// Test if the returned value is smaller than the original.
// A positive input will round towards zero and be lower when we need it to be greater.
__m128 is_positive = _mm_cmplt_ss(integer_part, input.value);
// Convert our mask to a float, ~0 yields -1.0 since it is a valid signed integer
// Negative values will yield a 0.0 bias
__m128 bias = _mm_cvtepi32_ps(_mm_castps_si128(is_positive));
// Subtract our bias to properly handle positive values
integer_part = _mm_sub_ss(integer_part, bias);
__m128 result = _mm_or_ps(_mm_and_ps(use_original_input, input.value), _mm_andnot_ps(use_original_input, integer_part));
return scalarf{ result };
#endif
}
#endif
//////////////////////////////////////////////////////////////////////////
// Returns the smallest integer value not less than the input (round towards positive infinity).
// scalar_ceil(1.8) = 2.0
// scalar_ceil(-1.8) = -1.0
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE float scalar_ceil(float input) RTM_NO_EXCEPT
{
#if defined(RTM_SSE2_INTRINSICS)
return scalar_cast(scalar_ceil(scalar_set(input)));
#else
return std::ceil(input);
#endif
}
#if defined(RTM_SSE2_INTRINSICS)
//////////////////////////////////////////////////////////////////////////
// Returns the input if it is within the min/max values otherwise the
// exceeded boundary is returned.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE scalarf RTM_SIMD_CALL scalar_clamp(scalarf_arg0 input, scalarf_arg1 min, scalarf_arg2 max) RTM_NO_EXCEPT
{
return scalarf{ _mm_min_ss(_mm_max_ss(input.value, min.value), max.value) };
}
#endif
//////////////////////////////////////////////////////////////////////////
// Returns the input if it is within the min/max values otherwise the
// exceeded boundary is returned.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE float scalar_clamp(float input, float min, float max) RTM_NO_EXCEPT
{
#if defined(RTM_SSE2_INTRINSICS)
return _mm_cvtss_f32(_mm_min_ss(_mm_max_ss(_mm_set_ps1(input), _mm_set_ps1(min)), _mm_set_ps1(max)));
#else
return std::min(std::max(input, min), max);
#endif
}
#if defined(RTM_SSE2_INTRINSICS)
//////////////////////////////////////////////////////////////////////////
// Returns the absolute value of the input.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE scalarf RTM_SIMD_CALL scalar_abs(scalarf_arg0 input) RTM_NO_EXCEPT
{
const __m128i abs_mask = _mm_set_epi32(0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL);
return scalarf{ _mm_and_ps(input.value, _mm_castsi128_ps(abs_mask)) };
}
#endif
//////////////////////////////////////////////////////////////////////////
// Returns the absolute value of the input.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE float scalar_abs(float input) RTM_NO_EXCEPT
{
#if defined(RTM_SSE2_INTRINSICS)
const __m128i abs_mask = _mm_set_epi32(0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL);
return _mm_cvtss_f32(_mm_and_ps(_mm_set_ps1(input), _mm_castsi128_ps(abs_mask)));
#else
return std::fabs(input);
#endif
}
#if defined(RTM_SSE2_INTRINSICS)
//////////////////////////////////////////////////////////////////////////
// Returns the square root of the input.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE scalarf RTM_SIMD_CALL scalar_sqrt(scalarf_arg0 input) RTM_NO_EXCEPT
{
return scalarf{ _mm_sqrt_ss(input.value) };
}
#endif
//////////////////////////////////////////////////////////////////////////
// Returns the square root of the input.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE float RTM_SIMD_CALL scalar_sqrt(float input) RTM_NO_EXCEPT
{
#if defined(RTM_SSE2_INTRINSICS)
return _mm_cvtss_f32(_mm_sqrt_ss(_mm_set_ps1(input)));
#else
return std::sqrt(input);
#endif
}
#if defined(RTM_SSE2_INTRINSICS)
//////////////////////////////////////////////////////////////////////////
// Returns the reciprocal square root of the input.
//////////////////////////////////////////////////////////////////////////
#if defined(RTM_COMPILER_MSVC) && _MSC_VER >= 1920 && _MSC_VER < 1925 && defined(_M_X64) && !defined(RTM_AVX_INTRINSICS)
// HACK!!! Visual Studio 2019 has a code generation bug triggered by the code below, disable optimizations for now
// Bug only happens with x64 SSE2, not with AVX nor with x86
// Fixed in 16.5.4, see https://github.com/nfrechette/rtm/issues/35
// TODO: Remove this hack sometime in 2022 or later once the fix is old enough that we no longer have to support the hack
#pragma optimize("", off)
#endif
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE scalarf RTM_SIMD_CALL scalar_sqrt_reciprocal(scalarf_arg0 input) RTM_NO_EXCEPT
{
// Perform two passes of Newton-Raphson iteration on the hardware estimate
const __m128 half = _mm_set_ss(0.5F);
const __m128 input_half = _mm_mul_ss(input.value, half);
const __m128 x0 = _mm_rsqrt_ss(input.value);
// First iteration
__m128 x1 = _mm_mul_ss(x0, x0);
x1 = _mm_sub_ss(half, _mm_mul_ss(input_half, x1));
x1 = _mm_add_ss(_mm_mul_ss(x0, x1), x0);
// Second iteration
__m128 x2 = _mm_mul_ss(x1, x1);
x2 = _mm_sub_ss(half, _mm_mul_ss(input_half, x2));
x2 = _mm_add_ss(_mm_mul_ss(x1, x2), x1);
return scalarf{ x2 };
}
#if defined(RTM_COMPILER_MSVC) && _MSC_VER >= 1920 && _MSC_VER < 1925 && defined(_M_X64) && !defined(RTM_AVX_INTRINSICS)
// HACK!!! See comment above
#pragma optimize("", on)
#endif
#endif
//////////////////////////////////////////////////////////////////////////
// Returns the reciprocal square root of the input.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE float RTM_SIMD_CALL scalar_sqrt_reciprocal(float input) RTM_NO_EXCEPT
{
#if defined(RTM_SSE2_INTRINSICS)
return scalar_cast(scalar_sqrt_reciprocal(scalar_set(input)));
#else
return 1.0F / scalar_sqrt(input);
#endif
}
#if defined(RTM_SSE2_INTRINSICS)
//////////////////////////////////////////////////////////////////////////
// Returns the reciprocal of the input.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE scalarf RTM_SIMD_CALL scalar_reciprocal(scalarf_arg0 input) RTM_NO_EXCEPT
{
return scalarf{ _mm_div_ss(_mm_set_ps1(1.0F), input.value) };
}
#endif
//////////////////////////////////////////////////////////////////////////
// Returns the reciprocal of the input.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE float RTM_SIMD_CALL scalar_reciprocal(float input) RTM_NO_EXCEPT
{
#if defined(RTM_SSE2_INTRINSICS)
return scalar_cast(scalar_reciprocal(scalar_set(input)));
#else
return 1.0f / input;
#endif
}
#if defined(RTM_SSE2_INTRINSICS)
//////////////////////////////////////////////////////////////////////////
// Returns the addition of the two scalar inputs.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE scalarf RTM_SIMD_CALL scalar_add(scalarf_arg0 lhs, scalarf_arg1 rhs) RTM_NO_EXCEPT
{
return scalarf{ _mm_add_ss(lhs.value, rhs.value) };
}
#endif
//////////////////////////////////////////////////////////////////////////
// Returns the addition of the two scalar inputs.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE constexpr float scalar_add(float lhs, float rhs) RTM_NO_EXCEPT
{
return lhs + rhs;
}
#if defined(RTM_SSE2_INTRINSICS)
//////////////////////////////////////////////////////////////////////////
// Returns the subtraction of the two scalar inputs.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE scalarf RTM_SIMD_CALL scalar_sub(scalarf_arg0 lhs, scalarf_arg1 rhs) RTM_NO_EXCEPT
{
return scalarf{ _mm_sub_ss(lhs.value, rhs.value) };
}
#endif
//////////////////////////////////////////////////////////////////////////
// Returns the subtraction of the two scalar inputs.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE constexpr float scalar_sub(float lhs, float rhs) RTM_NO_EXCEPT
{
return lhs - rhs;
}
#if defined(RTM_SSE2_INTRINSICS)
//////////////////////////////////////////////////////////////////////////
// Returns the multiplication of the two scalar inputs.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE scalarf RTM_SIMD_CALL scalar_mul(scalarf_arg0 lhs, scalarf_arg1 rhs) RTM_NO_EXCEPT
{
return scalarf{ _mm_mul_ss(lhs.value, rhs.value) };
}
#endif
//////////////////////////////////////////////////////////////////////////
// Returns the multiplication of the two scalar inputs.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE constexpr float scalar_mul(float lhs, float rhs) RTM_NO_EXCEPT
{
return lhs * rhs;
}
#if defined(RTM_SSE2_INTRINSICS)
//////////////////////////////////////////////////////////////////////////
// Returns the division of the two scalar inputs.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE scalarf RTM_SIMD_CALL scalar_div(scalarf_arg0 lhs, scalarf_arg1 rhs) RTM_NO_EXCEPT
{
return scalarf{ _mm_div_ss(lhs.value, rhs.value) };
}
#endif
//////////////////////////////////////////////////////////////////////////
// Returns the division of the two scalar inputs.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE constexpr float scalar_div(float lhs, float rhs) RTM_NO_EXCEPT
{
return lhs / rhs;
}
#if defined(RTM_SSE2_INTRINSICS)
//////////////////////////////////////////////////////////////////////////
// Returns the multiplication/addition of the three inputs: s2 + (s0 * s1)
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE scalarf RTM_SIMD_CALL scalar_mul_add(scalarf_arg0 s0, scalarf_arg1 s1, scalarf_arg2 s2) RTM_NO_EXCEPT
{
return scalarf{ _mm_add_ss(_mm_mul_ss(s0.value, s1.value), s2.value) };
}
#endif
//////////////////////////////////////////////////////////////////////////
// Returns the multiplication/addition of the three inputs: s2 + (s0 * s1)
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE float scalar_mul_add(float s0, float s1, float s2) RTM_NO_EXCEPT
{
#if defined(RTM_NEON_INTRINSICS)
return std::fma(s0, s1, s2);
#else
return (s0 * s1) + s2;
#endif
}
#if defined(RTM_SSE2_INTRINSICS)
//////////////////////////////////////////////////////////////////////////
// Returns the negative multiplication/subtraction of the three inputs: -((s0 * s1) - s2)
// This is mathematically equivalent to: s2 - (s0 * s1)
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE scalarf RTM_SIMD_CALL scalar_neg_mul_sub(scalarf_arg0 s0, scalarf_arg1 s1, scalarf_arg2 s2) RTM_NO_EXCEPT
{
return scalarf{ _mm_sub_ss(s2.value, _mm_mul_ss(s0.value, s1.value)) };
}
#endif
//////////////////////////////////////////////////////////////////////////
// Returns the negative multiplication/subtraction of the three inputs: -((s0 * s1) - s2)
// This is mathematically equivalent to: s2 - (s0 * s1)
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE constexpr float scalar_neg_mul_sub(float s0, float s1, float s2) RTM_NO_EXCEPT
{
return s2 - (s0 * s1);
}
#if defined(RTM_SSE2_INTRINSICS)
//////////////////////////////////////////////////////////////////////////
// Returns the linear interpolation of the two inputs at the specified alpha.
// The formula used is: ((1.0 - alpha) * start) + (alpha * end).
// Interpolation is stable and will return 'start' when alpha is 0.0 and 'end' when it is 1.0.
// This is the same instruction count when FMA is present but it might be slightly slower
// due to the extra multiplication compared to: start + (alpha * (end - start)).
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE scalarf RTM_SIMD_CALL scalar_lerp(scalarf_arg0 start, scalarf_arg1 end, scalarf_arg2 alpha) RTM_NO_EXCEPT
{
// ((1.0 - alpha) * start) + (alpha * end) == (start - alpha * start) + (alpha * end)
return scalar_mul_add(end, alpha, scalar_neg_mul_sub(start, alpha, start));
}
#endif
//////////////////////////////////////////////////////////////////////////
// Returns the linear interpolation of the two inputs at the specified alpha.
// The formula used is: ((1.0 - alpha) * start) + (alpha * end).
// Interpolation is stable and will return 'start' when alpha is 0.0 and 'end' when it is 1.0.
// This is the same instruction count when FMA is present but it might be slightly slower
// due to the extra multiplication compared to: start + (alpha * (end - start)).
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE float scalar_lerp(float start, float end, float alpha) RTM_NO_EXCEPT
{
// ((1.0 - alpha) * start) + (alpha * end) == (start - alpha * start) + (alpha * end)
return scalar_mul_add(end, alpha, scalar_neg_mul_sub(start, alpha, start));
}
#if defined(RTM_SSE2_INTRINSICS)
//////////////////////////////////////////////////////////////////////////
// Returns the smallest of the two inputs.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE scalarf RTM_SIMD_CALL scalar_min(scalarf_arg0 lhs, scalarf_arg1 rhs) RTM_NO_EXCEPT
{
return scalarf{ _mm_min_ss(lhs.value, rhs.value) };
}
#endif
//////////////////////////////////////////////////////////////////////////
// Returns the smallest of the two inputs.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE float scalar_min(float left, float right) RTM_NO_EXCEPT
{
#if defined(RTM_SSE2_INTRINSICS)
return _mm_cvtss_f32(_mm_min_ss(_mm_set_ps1(left), _mm_set_ps1(right)));
#else
return std::min(left, right);
#endif
}
#if defined(RTM_SSE2_INTRINSICS)
//////////////////////////////////////////////////////////////////////////
// Returns the largest of the two inputs.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE scalarf RTM_SIMD_CALL scalar_max(scalarf_arg0 lhs, scalarf_arg1 rhs) RTM_NO_EXCEPT
{
return scalarf{ _mm_max_ss(lhs.value, rhs.value) };
}
#endif
//////////////////////////////////////////////////////////////////////////
// Returns the largest of the two inputs.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE float scalar_max(float left, float right) RTM_NO_EXCEPT
{
#if defined(RTM_SSE2_INTRINSICS)
return _mm_cvtss_f32(_mm_max_ss(_mm_set_ps1(left), _mm_set_ps1(right)));
#else
return std::max(left, right);
#endif
}
#if defined(RTM_SSE2_INTRINSICS)
//////////////////////////////////////////////////////////////////////////
// Returns true if both inputs are equal, false otherwise.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE bool RTM_SIMD_CALL scalar_equal(scalarf_arg0 lhs, scalarf_arg1 rhs) RTM_NO_EXCEPT
{
return _mm_comieq_ss(lhs.value, rhs.value) != 0;
}
#endif
//////////////////////////////////////////////////////////////////////////
// Returns true if both inputs are equal, false otherwise.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE constexpr bool scalar_equal(float lhs, float rhs) RTM_NO_EXCEPT
{
return lhs == rhs;
}
#if defined(RTM_SSE2_INTRINSICS)
//////////////////////////////////////////////////////////////////////////
// Returns true if lhs < rhs, false otherwise.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE bool RTM_SIMD_CALL scalar_lower_than(scalarf_arg0 lhs, scalarf_arg1 rhs) RTM_NO_EXCEPT
{
return _mm_comilt_ss(lhs.value, rhs.value) != 0;
}
#endif
//////////////////////////////////////////////////////////////////////////
// Returns true if lhs < rhs, false otherwise.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE constexpr bool scalar_lower_than(float lhs, float rhs) RTM_NO_EXCEPT
{
return lhs < rhs;
}
#if defined(RTM_SSE2_INTRINSICS)
//////////////////////////////////////////////////////////////////////////
// Returns true if lhs <= rhs, false otherwise.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE bool RTM_SIMD_CALL scalar_lower_equal(scalarf_arg0 lhs, scalarf_arg1 rhs) RTM_NO_EXCEPT
{
return _mm_comile_ss(lhs.value, rhs.value) != 0;
}
#endif
//////////////////////////////////////////////////////////////////////////
// Returns true if lhs <= rhs, false otherwise.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE constexpr bool scalar_lower_equal(float lhs, float rhs) RTM_NO_EXCEPT
{
return lhs <= rhs;
}
#if defined(RTM_SSE2_INTRINSICS)
//////////////////////////////////////////////////////////////////////////
// Returns true if lhs > rhs, false otherwise.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE bool RTM_SIMD_CALL scalar_greater_than(scalarf_arg0 lhs, scalarf_arg1 rhs) RTM_NO_EXCEPT
{
return _mm_comigt_ss(lhs.value, rhs.value) != 0;
}
#endif
//////////////////////////////////////////////////////////////////////////
// Returns true if lhs > rhs, false otherwise.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE constexpr bool scalar_greater_than(float lhs, float rhs) RTM_NO_EXCEPT
{
return lhs > rhs;
}
#if defined(RTM_SSE2_INTRINSICS)
//////////////////////////////////////////////////////////////////////////
// Returns true if lhs >= rhs, false otherwise.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE bool RTM_SIMD_CALL scalar_greater_equal(scalarf_arg0 lhs, scalarf_arg1 rhs) RTM_NO_EXCEPT
{
return _mm_comige_ss(lhs.value, rhs.value) != 0;
}
#endif
//////////////////////////////////////////////////////////////////////////
// Returns true if lhs >= rhs, false otherwise.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE constexpr bool scalar_greater_equal(float lhs, float rhs) RTM_NO_EXCEPT
{
return lhs >= rhs;
}
#if defined(RTM_SSE2_INTRINSICS)
//////////////////////////////////////////////////////////////////////////
// Returns true if both inputs are nearly equal, otherwise false: abs(lhs - rhs) <= threshold
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE bool RTM_SIMD_CALL scalar_near_equal(scalarf_arg0 lhs, scalarf_arg1 rhs, scalarf_arg2 threshold) RTM_NO_EXCEPT
{
return scalar_lower_equal(scalar_abs(scalar_sub(lhs, rhs)), threshold);
}
#endif
//////////////////////////////////////////////////////////////////////////
// Returns true if both inputs are nearly equal, otherwise false: abs(lhs - rhs) <= threshold
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE bool scalar_near_equal(float lhs, float rhs, float threshold) RTM_NO_EXCEPT
{
return scalar_abs(lhs - rhs) <= threshold;
}
#if defined(RTM_SSE2_INTRINSICS)
//////////////////////////////////////////////////////////////////////////
// Returns true if the input is finite (not NaN or Inf), false otherwise.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE bool RTM_SIMD_CALL scalar_is_finite(scalarf_arg0 input) RTM_NO_EXCEPT
{
const __m128i abs_mask = _mm_set_epi32(0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL);
__m128 abs_input = _mm_and_ps(input.value, _mm_castsi128_ps(abs_mask));
const __m128 infinity = _mm_set_ps1(std::numeric_limits<float>::infinity());
__m128 is_infinity = _mm_cmpeq_ss(abs_input, infinity);
__m128 is_nan = _mm_cmpneq_ss(input.value, input.value);
__m128 is_not_finite = _mm_or_ps(is_infinity, is_nan);
return (_mm_movemask_ps(is_not_finite) & 0x1) == 0;
}
#endif
//////////////////////////////////////////////////////////////////////////
// Returns true if the input is finite (not NaN or Inf), false otherwise.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE bool scalar_is_finite(float input) RTM_NO_EXCEPT
{
return std::isfinite(input);
}
#if defined(RTM_SSE2_INTRINSICS)
//////////////////////////////////////////////////////////////////////////
// Returns the rounded input using a symmetric algorithm.
// scalar_symmetric_round(1.5) = 2.0
// scalar_symmetric_round(1.2) = 1.0
// scalar_symmetric_round(-1.5) = -2.0
// scalar_symmetric_round(-1.2) = -1.0
// Note: This function relies on the default floating point rounding mode (banker's rounding).
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK inline scalarf RTM_SIMD_CALL scalar_round_symmetric(scalarf_arg0 input) RTM_NO_EXCEPT
{
// NaN, +- Infinity, and numbers larger or equal to 2^23 remain unchanged
// since they have no fractional part.
#if defined(RTM_SSE4_INTRINSICS)
__m128 is_positive = _mm_cmpge_ss(input.value, _mm_setzero_ps());
const __m128 sign_mask = _mm_set_ps(-0.0F, -0.0F, -0.0F, -0.0F);
__m128 sign = _mm_andnot_ps(is_positive, sign_mask);
// For positive values, we add a bias of 0.5.
// For negative values, we add a bias of -0.5.
__m128 bias = _mm_or_ps(sign, _mm_set_ps1(0.5F));
__m128 biased_input = _mm_add_ss(input.value, bias);
__m128 floored = _mm_floor_ss(biased_input, biased_input);
__m128 ceiled = _mm_ceil_ss(biased_input, biased_input);
#if defined(RTM_AVX_INTRINSICS)
__m128 result = _mm_blendv_ps(ceiled, floored, is_positive);
#else
__m128 result = _mm_or_ps(_mm_and_ps(is_positive, floored), _mm_andnot_ps(is_positive, ceiled));
#endif
return scalarf{ result };
#else
const __m128i abs_mask = _mm_set_epi32(0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL);
const __m128 fractional_limit = _mm_set_ps1(8388608.0F); // 2^23
// Build our mask, larger values that have no fractional part, and infinities will be true
// Smaller values and NaN will be false
__m128 abs_input = _mm_and_ps(input.value, _mm_castsi128_ps(abs_mask));
__m128 is_input_large = _mm_cmpge_ss(abs_input, fractional_limit);
// Test if our input is NaN with (value != value), it is only true for NaN
__m128 is_nan = _mm_cmpneq_ss(input.value, input.value);
// Combine our masks to determine if we should return the original value
__m128 use_original_input = _mm_or_ps(is_input_large, is_nan);
const __m128 sign_mask = _mm_set_ps(-0.0F, -0.0F, -0.0F, -0.0F);
__m128 sign = _mm_and_ps(input.value, sign_mask);
// For positive values, we add a bias of 0.5.
// For negative values, we add a bias of -0.5.
__m128 bias = _mm_or_ps(sign, _mm_set_ps1(0.5F));
__m128 biased_input = _mm_add_ss(input.value, bias);
// Convert to an integer with truncation and back, this rounds towards zero.
__m128 integer_part = _mm_cvtepi32_ps(_mm_cvttps_epi32(biased_input));
__m128 result = _mm_or_ps(_mm_and_ps(use_original_input, input.value), _mm_andnot_ps(use_original_input, integer_part));
return scalarf{ result };
#endif
}
#endif
//////////////////////////////////////////////////////////////////////////
// Returns the rounded input using a symmetric algorithm.
// scalar_round_symmetric(1.5) = 2.0
// scalar_round_symmetric(1.2) = 1.0
// scalar_round_symmetric(-1.5) = -2.0
// scalar_round_symmetric(-1.2) = -1.0
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK inline float scalar_round_symmetric(float input) RTM_NO_EXCEPT
{
#if defined(RTM_SSE2_INTRINSICS)
return scalar_cast(scalar_round_symmetric(scalar_set(input)));
#elif defined(RTM_NEON64_INTRINSICS)
// arm64 has floor/ceil instructions
return input >= 0.0F ? scalar_floor(input + 0.5F) : scalar_ceil(input - 0.5F);
#else
// NaN, +- Infinity, and numbers larger or equal to 2^23 remain unchanged
// since they have no fractional part.
const float fractional_limit = 8388608.0F; // 2^23
// Build our mask, larger values that have no fractional part, and infinities will be true
// Smaller values and NaN will be false
float abs_input = scalar_abs(input);
bool is_input_large = abs_input >= fractional_limit;
// Test if our input is NaN with (value != value), it is only true for NaN
bool is_nan = input != input;
// Combine our masks to determine if we should return the original value
bool use_original_input = is_input_large | is_nan;
// For positive values, we add a bias of 0.5.
// For negative values, we add a bias of -0.5.
float bias = input >= 0.0F ? 0.5F : -0.5F;
float biased_input = input + bias;
// Convert to an integer with truncation and back, this rounds towards zero.
float integer_part = static_cast<float>(static_cast<int32_t>(biased_input));
return use_original_input ? input : integer_part;
#endif
}
#if defined(RTM_SSE2_INTRINSICS)
//////////////////////////////////////////////////////////////////////////
// Returns the rounded input using banker's rounding (half to even).
// scalar_round_bankers(2.5) = 2.0
// scalar_round_bankers(1.5) = 2.0
// scalar_round_bankers(1.2) = 1.0
// scalar_round_bankers(-2.5) = -2.0
// scalar_round_bankers(-1.5) = -2.0
// scalar_round_bankers(-1.2) = -1.0
// Note: This function relies on the default floating point rounding mode (banker's rounding).
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE scalarf RTM_SIMD_CALL scalar_round_bankers(scalarf_arg0 input) RTM_NO_EXCEPT
{
#if defined(RTM_SSE4_INTRINSICS)
return scalarf{ _mm_round_ss(input.value, input.value, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC) };
#else
const __m128 sign_mask = _mm_set_ps(-0.0F, -0.0F, -0.0F, -0.0F);
__m128 sign = _mm_and_ps(input.value, sign_mask);
// We add the largest integer that a 32 bit floating point number can represent and subtract it afterwards.
// This relies on the fact that if we had a fractional part, the new value cannot be represented accurately
// and IEEE 754 will perform rounding for us. The default rounding mode is Banker's rounding.
// This has the effect of removing the fractional part while simultaneously rounding.
// Use the same sign as the input value to make sure we handle positive and negative values.
const __m128 fractional_limit = _mm_set_ps1(8388608.0F); // 2^23
__m128 truncating_offset = _mm_or_ps(sign, fractional_limit);
__m128 integer_part = _mm_sub_ss(_mm_add_ss(input.value, truncating_offset), truncating_offset);
// If our input was so large that it had no fractional part, return it unchanged
// Otherwise return our integer part
const __m128i abs_mask = _mm_set_epi32(0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL);
__m128 abs_input = _mm_and_ps(input.value, _mm_castsi128_ps(abs_mask));
__m128 is_input_large = _mm_cmpge_ss(abs_input, fractional_limit);
__m128 result = _mm_or_ps(_mm_and_ps(is_input_large, input.value), _mm_andnot_ps(is_input_large, integer_part));
return scalarf{ result };
#endif
}
#endif
//////////////////////////////////////////////////////////////////////////
// Returns the rounded input using banker's rounding (half to even).
// scalar_round_bankers(2.5) = 2.0
// scalar_round_bankers(1.5) = 2.0
// scalar_round_bankers(1.2) = 1.0
// scalar_round_bankers(-2.5) = -2.0
// scalar_round_bankers(-1.5) = -2.0
// scalar_round_bankers(-1.2) = -1.0
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE float scalar_round_bankers(float input) RTM_NO_EXCEPT
{
#if defined(RTM_SSE2_INTRINSICS)
return scalar_cast(scalar_round_bankers(scalar_set(input)));
#elif defined(RTM_NEON64_INTRINSICS) && defined(RTM_IMPL_VRNDNS_SUPPORTED)
return vrndns_f32(input);
#else
if (!scalar_is_finite(input))
return input;
int32_t whole = static_cast<int32_t>(input);
float whole_f = static_cast<float>(whole);
float remainder = scalar_abs(input - whole_f);
if (remainder < 0.5F)
return whole_f;
if (remainder > 0.5F)
return input >= 0.0F ? (whole_f + 1.0F) : (whole_f - 1.0F);
if ((whole % 2) == 0)
return whole_f;
else
return input >= 0.0F ? (whole_f + 1.0F) : (whole_f - 1.0F);
#endif
}
//////////////////////////////////////////////////////////////////////////
// Returns the fractional part of the input.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE float scalar_fraction(float value) RTM_NO_EXCEPT
{
return value - scalar_floor(value);
}
//////////////////////////////////////////////////////////////////////////
// Safely casts an integral input into a float64 output.
//////////////////////////////////////////////////////////////////////////
template<typename SrcIntegralType>
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE float scalar_safe_to_float(SrcIntegralType input) RTM_NO_EXCEPT
{
float input_f = float(input);
RTM_ASSERT(SrcIntegralType(input_f) == input, "Conversion to float would result in truncation");
return input_f;
}
//////////////////////////////////////////////////////////////////////////
// Trigonometric functions
//////////////////////////////////////////////////////////////////////////
#if defined(RTM_SSE2_INTRINSICS)
//////////////////////////////////////////////////////////////////////////
// Returns the sine of the input angle.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK inline scalarf RTM_SIMD_CALL scalar_sin(scalarf_arg0 angle) RTM_NO_EXCEPT
{
// Use a degree 11 minimax approximation polynomial
// See: GPGPU Programming for Games and Science (David H. Eberly)
// Remap our input in the [-pi, pi] range
__m128 quotient = _mm_mul_ss(angle.value, _mm_set_ps1(rtm::constants::one_div_two_pi()));
quotient = scalar_round_bankers(scalarf{ quotient }).value;
quotient = _mm_mul_ss(quotient, _mm_set_ps1(rtm::constants::two_pi()));
__m128 x = _mm_sub_ss(angle.value, quotient);
// Remap our input in the [-pi/2, pi/2] range
const __m128 sign_mask = _mm_set_ps(-0.0F, -0.0F, -0.0F, -0.0F);
__m128 sign = _mm_and_ps(x, sign_mask);
__m128 reference = _mm_or_ps(sign, _mm_set_ps1(rtm::constants::pi()));
const __m128 reflection = _mm_sub_ss(reference, x);
const __m128i abs_mask = _mm_set_epi32(0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL);
const __m128 x_abs = _mm_and_ps(x, _mm_castsi128_ps(abs_mask));
__m128 is_less_equal_than_half_pi = _mm_cmple_ss(x_abs, _mm_set_ps1(rtm::constants::half_pi()));
#if defined(RTM_AVX_INTRINSICS)
x = _mm_blendv_ps(reflection, x, is_less_equal_than_half_pi);
#else
x = _mm_or_ps(_mm_andnot_ps(is_less_equal_than_half_pi, reflection), _mm_and_ps(x, is_less_equal_than_half_pi));
#endif
// Calculate our value
const float x2 = _mm_cvtss_f32(_mm_mul_ss(x, x));
float result = (x2 * -2.3828544692960918e-8F) + 2.7521557770526783e-6F;
result = (result * x2) - 1.9840782426250314e-4F;
result = (result * x2) + 8.3333303183525942e-3F;
result = (result * x2) - 1.6666666601721269e-1F;
result = (result * x2) + 1.0F;
result = result * _mm_cvtss_f32(x);
return scalar_set(result);
}
#endif
//////////////////////////////////////////////////////////////////////////
// Returns the sine of the input angle.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK inline float RTM_SIMD_CALL scalar_sin(float angle) RTM_NO_EXCEPT
{
#if defined(RTM_SSE2_INTRINSICS)
return scalar_cast(scalar_sin(scalar_set(angle)));
#elif defined(RTM_NEON_INTRINSICS)
return std::sin(angle);
#else
// Use a degree 11 minimax approximation polynomial
// See: GPGPU Programming for Games and Science (David H. Eberly)
// Remap our input in the [-pi, pi] range
float quotient = angle * rtm::constants::one_div_two_pi();
quotient = scalar_round_bankers(quotient);
quotient = quotient * rtm::constants::two_pi();
float x = angle - quotient;
// Remap our input in the [-pi/2, pi/2] range
const float reference = std::copysign(rtm::constants::pi(), x);
const float reflection = reference - x;
const float x_abs = scalar_abs(x);
x = x_abs <= rtm::constants::half_pi() ? x : reflection;
// Calculate our value
const float x2 = x * x;
float result = (x2 * -2.3828544692960918e-8F) + 2.7521557770526783e-6F;
result = (result * x2) - 1.9840782426250314e-4F;
result = (result * x2) + 8.3333303183525942e-3F;
result = (result * x2) - 1.6666666601721269e-1F;
result = (result * x2) + 1.0F;
result = result * x;
return result;
#endif
}
#if defined(RTM_SSE2_INTRINSICS)
//////////////////////////////////////////////////////////////////////////
// Returns the cosine of the input angle.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK inline scalarf RTM_SIMD_CALL scalar_cos(scalarf_arg0 angle) RTM_NO_EXCEPT
{
// Use a degree 10 minimax approximation polynomial
// See: GPGPU Programming for Games and Science (David H. Eberly)
// Remap our input in the [-pi, pi] range
__m128 quotient = _mm_mul_ss(angle.value, _mm_set_ps1(rtm::constants::one_div_two_pi()));
quotient = scalar_round_bankers(scalarf{ quotient }).value;
quotient = _mm_mul_ss(quotient, _mm_set_ps1(rtm::constants::two_pi()));
__m128 x = _mm_sub_ss(angle.value, quotient);
// Remap our input in the [-pi/2, pi/2] range
const __m128 sign_mask = _mm_set_ps(-0.0F, -0.0F, -0.0F, -0.0F);
__m128 x_sign = _mm_and_ps(x, sign_mask);
__m128 reference = _mm_or_ps(x_sign, _mm_set_ps1(rtm::constants::pi()));
const __m128 reflection = _mm_sub_ss(reference, x);
const __m128i abs_mask = _mm_set_epi32(0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL);
__m128 x_abs = _mm_and_ps(x, _mm_castsi128_ps(abs_mask));
__m128 is_less_equal_than_half_pi = _mm_cmple_ss(x_abs, _mm_set_ps1(rtm::constants::half_pi()));
#if defined(RTM_AVX_INTRINSICS)
x = _mm_blendv_ps(reflection, x, is_less_equal_than_half_pi);
#else
x = _mm_or_ps(_mm_andnot_ps(is_less_equal_than_half_pi, reflection), _mm_and_ps(x, is_less_equal_than_half_pi));
#endif
// Calculate our value
const float x2 = _mm_cvtss_f32(_mm_mul_ss(x, x));
float result = (x2 * -2.6051615464872668e-7F) + 2.4760495088926859e-5F;
result = (result * x2) - 1.3888377661039897e-3F;
result = (result * x2) + 4.1666638865338612e-2F;
result = (result * x2) - 4.9999999508695869e-1F;
result = (result * x2) + 1.0F;
// Remap into [-pi, pi]
__m128 result_v = _mm_set_ps1(result);
__m128 cosine = _mm_or_ps(result_v, _mm_andnot_ps(is_less_equal_than_half_pi, sign_mask));
return scalarf{ cosine };
}
#endif
//////////////////////////////////////////////////////////////////////////
// Returns the cosine of the input angle.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK inline float RTM_SIMD_CALL scalar_cos(float angle) RTM_NO_EXCEPT
{
#if defined(RTM_SSE2_INTRINSICS)
return scalar_cast(scalar_cos(scalar_set(angle)));
#elif defined(RTM_NEON_INTRINSICS)
return std::cos(angle);
#else
// Use a degree 10 minimax approximation polynomial
// See: GPGPU Programming for Games and Science (David H. Eberly)
// Remap our input in the [-pi, pi] range
float quotient = angle * rtm::constants::one_div_two_pi();
quotient = scalar_round_bankers(quotient);
quotient = quotient * rtm::constants::two_pi();
float x = angle - quotient;
// Remap our input in the [-pi/2, pi/2] range
const float reference = std::copysign(rtm::constants::pi(), x);
const float reflection = reference - x;
const float x_abs = scalar_abs(x);
x = x_abs <= rtm::constants::half_pi() ? x : reflection;
// Calculate our value
const float x2 = x * x;
float result = (x2 * -2.6051615464872668e-7F) + 2.4760495088926859e-5F;
result = (result * x2) - 1.3888377661039897e-3F;
result = (result * x2) + 4.1666638865338612e-2F;
result = (result * x2) - 4.9999999508695869e-1F;
result = (result * x2) + 1.0F;
// Remap into [-pi, pi]
if (x_abs <= rtm::constants::half_pi())
return result;
else
return -result;
#endif
}
#if defined(RTM_SSE2_INTRINSICS)
//////////////////////////////////////////////////////////////////////////
// Returns both sine and cosine of the input angle.
// The result's [x] component contains sin(angle).
// The result's [y] component contains cos(angle).
// [zw] are undefined.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK inline vector4f RTM_SIMD_CALL scalar_sincos(scalarf angle) RTM_NO_EXCEPT
{
scalarf sin_ = scalar_sin(angle);
scalarf cos_ = scalar_cos(angle);
return _mm_unpacklo_ps(sin_.value, cos_.value);
}
#endif
//////////////////////////////////////////////////////////////////////////
// Returns both sine and cosine of the input angle.
// The result's [x] component contains sin(angle).
// The result's [y] component contains cos(angle).
// [zw] are undefined.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK inline vector4f RTM_SIMD_CALL scalar_sincos(float angle) RTM_NO_EXCEPT
{
scalarf angle_ = scalar_set(angle);
scalarf sin_ = scalar_sin(angle_);
scalarf cos_ = scalar_cos(angle_);
#if defined(RTM_SSE2_INTRINSICS)
return _mm_unpacklo_ps(sin_.value, cos_.value);
#elif defined(RTM_NEON_INTRINSICS)
float32x2_t xy = vcreate_f32(((uint64_t)*(const uint32_t*)&sin_) | ((uint64_t)(*(const uint32_t*)&cos_) << 32));
return vcombine_f32(xy, xy);
#else
return vector4f{ sin_, cos_, sin_, cos_ };
#endif
}
//////////////////////////////////////////////////////////////////////////
// Returns both sine and cosine of the input angle.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK inline void scalar_sincos(float angle, float& out_sin, float& out_cos) RTM_NO_EXCEPT
{
out_sin = scalar_sin(angle);
out_cos = scalar_cos(angle);
}
#if defined(RTM_SSE2_INTRINSICS)
//////////////////////////////////////////////////////////////////////////
// Returns the arc-sine of the input.
// Input value must be in the range [-1.0, 1.0].
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK inline scalarf RTM_SIMD_CALL scalar_asin(scalarf_arg0 value) RTM_NO_EXCEPT
{
// Use a degree 7 minimax approximation polynomial
// See: GPGPU Programming for Games and Science (David H. Eberly)
// We first calculate our scale: sqrt(1.0 - abs(value))
const __m128i abs_mask = _mm_set_epi32(0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL);
__m128 abs_value = _mm_and_ps(value.value, _mm_castsi128_ps(abs_mask));
// Calculate our value
const float x = _mm_cvtss_f32(abs_value);
float result = (x * -1.2690614339589956e-3F) + 6.7072304676685235e-3F;
result = (result * x) - 1.7162031184398074e-2F;
result = (result * x) + 3.0961594977611639e-2F;
result = (result * x) - 5.0207843052845647e-2F;
result = (result * x) + 8.8986946573346160e-2F;
result = (result * x) - 2.1459960076929829e-1F;
result = (result * x) + 1.5707963267948966F;
// Scale our result
const __m128 scale = _mm_sqrt_ss(_mm_sub_ss(_mm_set_ps1(1.0F), abs_value));
result = result * _mm_cvtss_f32(scale);
// Handle negative values through reflection
if (_mm_cvtss_f32(value.value) < 0.0F)
result = rtm::constants::pi() - result;
// Shift our final result
const float offset = rtm::constants::half_pi();
result = offset - result;
return scalarf{ _mm_set_ps1(result) };
}
#endif
//////////////////////////////////////////////////////////////////////////
// Returns the arc-sine of the input.
// Input value must be in the range [-1.0, 1.0].
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK inline float scalar_asin(float value) RTM_NO_EXCEPT
{
#if defined(RTM_SSE2_INTRINSICS)
return scalar_cast(scalar_asin(scalar_set(value)));
#elif defined(RTM_NEON_INTRINSICS)
return std::asin(value);
#else
// Use a degree 7 minimax approximation polynomial
// See: GPGPU Programming for Games and Science (David H. Eberly)
// We first calculate our scale: sqrt(1.0 - abs(value))
const float abs_value = scalar_abs(value);
// Calculate our value
float result = (abs_value * -1.2690614339589956e-3F) + 6.7072304676685235e-3F;
result = (result * abs_value) - 1.7162031184398074e-2F;
result = (result * abs_value) + 3.0961594977611639e-2F;
result = (result * abs_value) - 5.0207843052845647e-2F;
result = (result * abs_value) + 8.8986946573346160e-2F;
result = (result * abs_value) - 2.1459960076929829e-1F;
result = (result * abs_value) + 1.5707963267948966F;
// Scale our result
const float scale = scalar_sqrt(1.0F - abs_value);
result = result * scale;
// Handle negative values through reflection
if (value < 0.0F)
result = rtm::constants::pi() - result;
// Shift our final result
const float offset = rtm::constants::half_pi();
result = offset - result;
return result;
#endif
}
#if defined(RTM_SSE2_INTRINSICS)
//////////////////////////////////////////////////////////////////////////
// Returns the arc-cosine of the input.
// Input value must be in the range [-1.0, 1.0].
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK inline scalarf RTM_SIMD_CALL scalar_acos(scalarf_arg0 value) RTM_NO_EXCEPT
{
// Use the identity: acos(value) + asin(value) = PI/2
// This ends up being: acos(value) = PI/2 - asin(value)
// Since asin(value) = PI/2 - sqrt(1.0 - polynomial(value))
// Our end result is acos(value) = sqrt(1.0 - polynomial(value))
// This means we can re-use the same polynomial as asin()
// See: GPGPU Programming for Games and Science (David H. Eberly)
// We first calculate our scale: sqrt(1.0 - abs(value))
const __m128i abs_mask = _mm_set_epi32(0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL);
__m128 abs_value = _mm_and_ps(value.value, _mm_castsi128_ps(abs_mask));
// Calculate our value
const float x = _mm_cvtss_f32(abs_value);
float result = (x * -1.2690614339589956e-3F) + 6.7072304676685235e-3F;
result = (result * x) - 1.7162031184398074e-2F;
result = (result * x) + 3.0961594977611639e-2F;
result = (result * x) - 5.0207843052845647e-2F;
result = (result * x) + 8.8986946573346160e-2F;
result = (result * x) - 2.1459960076929829e-1F;
result = (result * x) + 1.5707963267948966F;
// Scale our result
const __m128 scale = _mm_sqrt_ss(_mm_sub_ss(_mm_set_ps1(1.0F), abs_value));
result = result * _mm_cvtss_f32(scale);
// Handle negative values through reflection
if (_mm_cvtss_f32(value.value) < 0.0F)
result = rtm::constants::pi() - result;
return scalarf{ _mm_set_ps1(result) };
}
#endif
//////////////////////////////////////////////////////////////////////////
// Returns the arc-cosine of the input.
// Input value must be in the range [-1.0, 1.0].
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK inline float scalar_acos(float value) RTM_NO_EXCEPT
{
#if defined(RTM_SSE2_INTRINSICS)
return scalar_cast(scalar_acos(scalar_set(value)));
#elif defined(RTM_NEON_INTRINSICS)
return std::acos(value);
#else
// Use the identity: acos(value) + asin(value) = PI/2
// This ends up being: acos(value) = PI/2 - asin(value)
// Since asin(value) = PI/2 - sqrt(1.0 - polynomial(value))
// Our end result is acos(value) = sqrt(1.0 - polynomial(value))
// This means we can re-use the same polynomial as asin()
// See: GPGPU Programming for Games and Science (David H. Eberly)
// We first calculate our scale: sqrt(1.0 - abs(value))
const float abs_value = scalar_abs(value);
// Calculate our value
float result = (abs_value * -1.2690614339589956e-3F) + 6.7072304676685235e-3F;
result = (result * abs_value) - 1.7162031184398074e-2F;
result = (result * abs_value) + 3.0961594977611639e-2F;
result = (result * abs_value) - 5.0207843052845647e-2F;
result = (result * abs_value) + 8.8986946573346160e-2F;
result = (result * abs_value) - 2.1459960076929829e-1F;
result = (result * abs_value) + 1.5707963267948966F;
// Scale our result
const float scale = scalar_sqrt(1.0F - abs_value);
result = result * scale;
// Handle negative values through reflection
if (value < 0.0F)
result = rtm::constants::pi() - result;
return result;
#endif
}
#if defined(RTM_SSE2_INTRINSICS)
//////////////////////////////////////////////////////////////////////////
// Returns the tangent of the input angle.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK inline scalarf RTM_SIMD_CALL scalar_tan(scalarf_arg0 angle) RTM_NO_EXCEPT
{
// Use the identity: tan(angle) = sin(angle) / cos(angle)
scalarf sin_ = scalar_sin(angle);
scalarf cos_ = scalar_cos(angle);
if (scalar_cast(cos_) == 0.0F)
return scalar_set(std::copysign(std::numeric_limits<float>::infinity(), scalar_cast(angle)));
return scalar_div(sin_, cos_);
}
#endif
//////////////////////////////////////////////////////////////////////////
// Returns the tangent of the input angle.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK inline float scalar_tan(float angle) RTM_NO_EXCEPT
{
#if defined(RTM_NEON_INTRINSICS)
return std::tan(angle);
#else
// Use the identity: tan(angle) = sin(angle) / cos(angle)
scalarf angle_ = scalar_set(angle);
scalarf sin_ = scalar_sin(angle_);
scalarf cos_ = scalar_cos(angle_);
if (scalar_cast(cos_) == 0.0F)
return std::copysign(std::numeric_limits<float>::infinity(), angle);
return scalar_cast(scalar_div(sin_, cos_));
#endif
}
#if defined(RTM_SSE2_INTRINSICS)
//////////////////////////////////////////////////////////////////////////
// Returns the arc-tangent of the input.
// Note that due to the sign ambiguity, atan cannot determine which quadrant
// the value resides in. See scalar_atan2.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK inline scalarf RTM_SIMD_CALL scalar_atan(scalarf_arg0 value) RTM_NO_EXCEPT
{
// Use a degree 13 minimax approximation polynomial
// See: GPGPU Programming for Games and Science (David H. Eberly)
// Discard our sign, we'll restore it later
const __m128i abs_mask = _mm_set_epi32(0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL);
__m128 abs_value = _mm_and_ps(value.value, _mm_castsi128_ps(abs_mask));
// Compute our value
__m128 is_larger_than_one = _mm_cmpgt_ss(abs_value, _mm_set_ps1(1.0F));
__m128 reciprocal = scalar_reciprocal(scalarf{ abs_value }).value;
#if defined(RTM_AVX_INTRINSICS)
__m128 x = _mm_blendv_ps(abs_value, reciprocal, is_larger_than_one);
#else
__m128 x = _mm_or_ps(_mm_andnot_ps(is_larger_than_one, abs_value), _mm_and_ps(reciprocal, is_larger_than_one));
#endif
float x_s = _mm_cvtss_f32(x);
float x2 = x_s * x_s;
float result = (x2 * 7.2128853633444123e-3F) - 3.5059680836411644e-2F;
result = (result * x2) + 8.1675882859940430e-2F;
result = (result * x2) - 1.3374657325451267e-1F;
result = (result * x2) + 1.9856563505717162e-1F;
result = (result * x2) - 3.3324998579202170e-1F;
result = (result * x2) + 1.0F;
result = result * x_s;
__m128 result_s = _mm_set_ps1(result);
__m128 remapped = _mm_sub_ss(_mm_set_ps1(rtm::constants::half_pi()), result_s);
// pi/2 - result
#if defined(RTM_AVX_INTRINSICS)
result_s = _mm_blendv_ps(result_s, remapped, is_larger_than_one);
#else
result_s = _mm_or_ps(_mm_andnot_ps(is_larger_than_one, result_s), _mm_and_ps(remapped, is_larger_than_one));
#endif
// Keep the original sign
result_s = _mm_or_ps(result_s, _mm_and_ps(value.value, _mm_set_ps1(-0.0F)));
return scalarf{ result_s };
}
#endif
//////////////////////////////////////////////////////////////////////////
// Returns the arc-tangent of the input.
// Note that due to the sign ambiguity, atan cannot determine which quadrant
// the value resides in. See scalar_atan2.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK inline float RTM_SIMD_CALL scalar_atan(float value) RTM_NO_EXCEPT
{
#if defined(RTM_SSE2_INTRINSICS)
return scalar_cast(scalar_atan(scalar_set(value)));
#elif defined(RTM_NEON_INTRINSICS)
return std::atan(value);
#else
// Use a degree 13 minimax approximation polynomial
// See: GPGPU Programming for Games and Science (David H. Eberly)
// Discard our sign, we'll restore it later
float abs_value = scalar_abs(value);
// Compute our value
float x = abs_value > 1.0F ? scalar_reciprocal(abs_value) : abs_value;
float x2 = x * x;
float result = (x2 * 7.2128853633444123e-3F) - 3.5059680836411644e-2F;
result = (result * x2) + 8.1675882859940430e-2F;
result = (result * x2) - 1.3374657325451267e-1F;
result = (result * x2) + 1.9856563505717162e-1F;
result = (result * x2) - 3.3324998579202170e-1F;
result = (result * x2) + 1.0F;
result = result * x;
if (abs_value > 1.0f)
result = rtm::constants::half_pi() - result; // pi/2 - result
// Keep the original sign
result = value >= 0.0F ? result : -result;
return result;
#endif
}
#if defined(RTM_SSE2_INTRINSICS)
//////////////////////////////////////////////////////////////////////////
// Returns the arc-tangent of [y/x] using the sign of the arguments to
// determine the correct quadrant.
// Y represents the proportion of the y-coordinate.
// X represents the proportion of the x-coordinate.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK inline scalarf RTM_SIMD_CALL scalar_atan2(scalarf y, scalarf x) RTM_NO_EXCEPT
{
// If X == 0.0 and Y != 0.0, we return PI/2 with the sign of Y
// If X == 0.0 and Y == 0.0, we return 0.0
// If X > 0.0, we return atan(y/x)
// If X < 0.0, we return atan(y/x) + sign(Y) * PI
// See: https://en.wikipedia.org/wiki/Atan2#Definition_and_computation
const __m128 zero = _mm_setzero_ps();
__m128 is_x_zero = _mm_cmpeq_ss(x.value, zero);
__m128 is_y_zero = _mm_cmpeq_ss(y.value, zero);
__m128 inputs_are_zero = _mm_and_ps(is_x_zero, is_y_zero);
__m128 is_x_positive = _mm_cmpgt_ss(x.value, zero);
const __m128 sign_mask = _mm_set_ps(-0.0F, -0.0F, -0.0F, -0.0F);
__m128 y_sign = _mm_and_ps(y.value, sign_mask);
// If X == 0.0, our offset is PI/2 otherwise it is PI both with the sign of Y
__m128 half_pi = _mm_set_ps1(rtm::constants::half_pi());
__m128 pi = _mm_set_ps1(rtm::constants::pi());
__m128 offset = _mm_or_ps(_mm_and_ps(is_x_zero, half_pi), _mm_andnot_ps(is_x_zero, pi));
offset = _mm_or_ps(offset, y_sign);
// If X > 0.0, our offset is 0.0
offset = _mm_andnot_ps(is_x_positive, offset);
// If X == 0.0 and Y == 0.0, our offset is 0.0
offset = _mm_andnot_ps(inputs_are_zero, offset);
__m128 angle = _mm_div_ss(y.value, x.value);
__m128 value = scalar_atan(scalarf{ angle }).value;
// If X == 0.0, our value is 0.0 otherwise it is atan(y/x)
value = _mm_or_ps(_mm_and_ps(is_x_zero, zero), _mm_andnot_ps(is_x_zero, value));
// If X == 0.0 and Y == 0.0, our value is 0.0
value = _mm_andnot_ps(inputs_are_zero, value);
__m128 result = _mm_add_ss(value, offset);
return scalarf{ result };
}
#endif
//////////////////////////////////////////////////////////////////////////
// Returns the arc-tangent of [y/x] using the sign of the arguments to
// determine the correct quadrant.
// Y represents the proportion of the y-coordinate.
// X represents the proportion of the x-coordinate.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK inline float scalar_atan2(float y, float x) RTM_NO_EXCEPT
{
#if defined(RTM_SSE2_INTRINSICS)
return scalar_cast(scalar_atan2(scalar_set(y), scalar_set(x)));
#elif defined(RTM_NEON_INTRINSICS)
return std::atan2(y, x);
#else
// If X == 0.0 and Y != 0.0, we return PI/2 with the sign of Y
// If X == 0.0 and Y == 0.0, we return 0.0
// If X > 0.0, we return atan(y/x)
// If X < 0.0, we return atan(y/x) + sign(Y) * PI
// See: https://en.wikipedia.org/wiki/Atan2#Definition_and_computation
if (x == 0.0F)
{
if (y == 0.0F)
return 0.0F;
return std::copysign(rtm::constants::half_pi(), y);
}
float value = scalar_atan(y / x);
if (x > 0.0F)
return value;
float offset = std::copysign(rtm::constants::pi(), y);
return value + offset;
#endif
}
//////////////////////////////////////////////////////////////////////////
// Converts degrees into radians.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE constexpr float scalar_deg_to_rad(float deg) RTM_NO_EXCEPT
{
return deg * constants::pi_div_one_eighty();
}
//////////////////////////////////////////////////////////////////////////
// Converts radians into degrees.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE constexpr float scalar_rad_to_deg(float rad) RTM_NO_EXCEPT
{
return rad * constants::one_eighty_div_pi();
}
}
RTM_IMPL_FILE_PRAGMA_POP