cocos-engine-external/mac/include/chipmunk/chipmunk_private.h

767 lines
18 KiB
C

/* Copyright (c) 2013 Scott Lembcke and Howling Moon Software
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef CHIPMUNK_PRIVATE_H
#define CHIPMUNK_PRIVATE_H
#ifdef CHIPMUNK_H
#error Cannot include chipmunk_private.h after chipmunk.h.
#endif
#define CP_ALLOW_PRIVATE_ACCESS 1
#include "chipmunk/chipmunk.h"
#define CP_HASH_COEF (3344921057ul)
#define CP_HASH_PAIR(A, B) ((cpHashValue)(A)*CP_HASH_COEF ^ (cpHashValue)(B)*CP_HASH_COEF)
// TODO: Eww. Magic numbers.
#define MAGIC_EPSILON 1e-5
//MARK: cpArray
struct cpArray {
int num, max;
void **arr;
};
cpArray *cpArrayNew(int size);
void cpArrayFree(cpArray *arr);
void cpArrayPush(cpArray *arr, void *object);
void *cpArrayPop(cpArray *arr);
void cpArrayDeleteObj(cpArray *arr, void *obj);
cpBool cpArrayContains(cpArray *arr, void *ptr);
void cpArrayFreeEach(cpArray *arr, void (freeFunc)(void*));
//MARK: cpHashSet
typedef cpBool (*cpHashSetEqlFunc)(void *ptr, void *elt);
typedef void *(*cpHashSetTransFunc)(void *ptr, void *data);
cpHashSet *cpHashSetNew(int size, cpHashSetEqlFunc eqlFunc);
void cpHashSetSetDefaultValue(cpHashSet *set, void *default_value);
void cpHashSetFree(cpHashSet *set);
int cpHashSetCount(cpHashSet *set);
void *cpHashSetInsert(cpHashSet *set, cpHashValue hash, void *ptr, cpHashSetTransFunc trans, void *data);
void *cpHashSetRemove(cpHashSet *set, cpHashValue hash, void *ptr);
void *cpHashSetFind(cpHashSet *set, cpHashValue hash, void *ptr);
typedef void (*cpHashSetIteratorFunc)(void *elt, void *data);
void cpHashSetEach(cpHashSet *set, cpHashSetIteratorFunc func, void *data);
typedef cpBool (*cpHashSetFilterFunc)(void *elt, void *data);
void cpHashSetFilter(cpHashSet *set, cpHashSetFilterFunc func, void *data);
//MARK: Bodies
struct cpBody {
// Integration functions
cpBodyVelocityFunc velocity_func;
cpBodyPositionFunc position_func;
// mass and it's inverse
cpFloat m;
cpFloat m_inv;
// moment of inertia and it's inverse
cpFloat i;
cpFloat i_inv;
// center of gravity
cpVect cog;
// position, velocity, force
cpVect p;
cpVect v;
cpVect f;
// Angle, angular velocity, torque (radians)
cpFloat a;
cpFloat w;
cpFloat t;
cpTransform transform;
cpDataPointer userData;
// "pseudo-velocities" used for eliminating overlap.
// Erin Catto has some papers that talk about what these are.
cpVect v_bias;
cpFloat w_bias;
cpSpace *space;
cpShape *shapeList;
cpArbiter *arbiterList;
cpConstraint *constraintList;
struct {
cpBody *root;
cpBody *next;
cpFloat idleTime;
} sleeping;
};
void cpBodyAddShape(cpBody *body, cpShape *shape);
void cpBodyRemoveShape(cpBody *body, cpShape *shape);
//void cpBodyAccumulateMassForShape(cpBody *body, cpShape *shape);
void cpBodyAccumulateMassFromShapes(cpBody *body);
void cpBodyRemoveConstraint(cpBody *body, cpConstraint *constraint);
//MARK: Spatial Index Functions
cpSpatialIndex *cpSpatialIndexInit(cpSpatialIndex *index, cpSpatialIndexClass *klass, cpSpatialIndexBBFunc bbfunc, cpSpatialIndex *staticIndex);
//MARK: Arbiters
enum cpArbiterState {
// Arbiter is active and its the first collision.
CP_ARBITER_STATE_FIRST_COLLISION,
// Arbiter is active and its not the first collision.
CP_ARBITER_STATE_NORMAL,
// Collision has been explicitly ignored.
// Either by returning false from a begin collision handler or calling cpArbiterIgnore().
CP_ARBITER_STATE_IGNORE,
// Collison is no longer active. A space will cache an arbiter for up to cpSpace.collisionPersistence more steps.
CP_ARBITER_STATE_CACHED,
// Collison arbiter is invalid because one of the shapes was removed.
CP_ARBITER_STATE_INVALIDATED,
};
struct cpArbiterThread {
struct cpArbiter *next, *prev;
};
struct cpContact {
cpVect r1, r2;
cpFloat nMass, tMass;
cpFloat bounce; // TODO: look for an alternate bounce solution.
cpFloat jnAcc, jtAcc, jBias;
cpFloat bias;
cpHashValue hash;
};
struct cpCollisionInfo {
const cpShape *a, *b;
cpCollisionID id;
cpVect n;
int count;
// TODO Should this be a unique struct type?
struct cpContact *arr;
};
struct cpArbiter {
cpFloat e;
cpFloat u;
cpVect surface_vr;
cpDataPointer data;
const cpShape *a, *b;
cpBody *body_a, *body_b;
struct cpArbiterThread thread_a, thread_b;
int count;
struct cpContact *contacts;
cpVect n;
// Regular, wildcard A and wildcard B collision handlers.
cpCollisionHandler *handler, *handlerA, *handlerB;
cpBool swapped;
cpTimestamp stamp;
enum cpArbiterState state;
};
cpArbiter* cpArbiterInit(cpArbiter *arb, cpShape *a, cpShape *b);
static inline struct cpArbiterThread *
cpArbiterThreadForBody(cpArbiter *arb, cpBody *body)
{
return (arb->body_a == body ? &arb->thread_a : &arb->thread_b);
}
void cpArbiterUnthread(cpArbiter *arb);
void cpArbiterUpdate(cpArbiter *arb, struct cpCollisionInfo *info, cpSpace *space);
void cpArbiterPreStep(cpArbiter *arb, cpFloat dt, cpFloat bias, cpFloat slop);
void cpArbiterApplyCachedImpulse(cpArbiter *arb, cpFloat dt_coef);
void cpArbiterApplyImpulse(cpArbiter *arb);
//MARK: Shapes/Collisions
struct cpShapeMassInfo {
cpFloat m;
cpFloat i;
cpVect cog;
cpFloat area;
};
typedef enum cpShapeType{
CP_CIRCLE_SHAPE,
CP_SEGMENT_SHAPE,
CP_POLY_SHAPE,
CP_NUM_SHAPES
} cpShapeType;
typedef cpBB (*cpShapeCacheDataImpl)(cpShape *shape, cpTransform transform);
typedef void (*cpShapeDestroyImpl)(cpShape *shape);
typedef void (*cpShapePointQueryImpl)(const cpShape *shape, cpVect p, cpPointQueryInfo *info);
typedef void (*cpShapeSegmentQueryImpl)(const cpShape *shape, cpVect a, cpVect b, cpFloat radius, cpSegmentQueryInfo *info);
typedef struct cpShapeClass cpShapeClass;
struct cpShapeClass {
cpShapeType type;
cpShapeCacheDataImpl cacheData;
cpShapeDestroyImpl destroy;
cpShapePointQueryImpl pointQuery;
cpShapeSegmentQueryImpl segmentQuery;
};
struct cpShape {
const cpShapeClass *klass;
cpSpace *space;
cpBody *body;
struct cpShapeMassInfo massInfo;
cpBB bb;
cpBool sensor;
cpFloat e;
cpFloat u;
cpVect surfaceV;
cpDataPointer userData;
cpCollisionType type;
cpShapeFilter filter;
cpShape *next;
cpShape *prev;
cpHashValue hashid;
};
struct cpCircleShape {
cpShape shape;
cpVect c, tc;
cpFloat r;
};
struct cpSegmentShape {
cpShape shape;
cpVect a, b, n;
cpVect ta, tb, tn;
cpFloat r;
cpVect a_tangent, b_tangent;
};
struct cpSplittingPlane {
cpVect v0, n;
};
#define CP_POLY_SHAPE_INLINE_ALLOC 6
struct cpPolyShape {
cpShape shape;
cpFloat r;
int count;
// The untransformed planes are appended at the end of the transformed planes.
struct cpSplittingPlane *planes;
// Allocate a small number of splitting planes internally for simple poly.
struct cpSplittingPlane _planes[2*CP_POLY_SHAPE_INLINE_ALLOC];
};
cpShape *cpShapeInit(cpShape *shape, const cpShapeClass *klass, cpBody *body, struct cpShapeMassInfo massInfo);
static inline cpBool
cpShapeActive(cpShape *shape)
{
// checks if the shape is added to a shape list.
// TODO could this just check the space now?
return (shape->prev || (shape->body && shape->body->shapeList == shape));
}
// Note: This function returns contact points with r1/r2 in absolute coordinates, not body relative.
struct cpCollisionInfo cpCollide(const cpShape *a, const cpShape *b, cpCollisionID id, struct cpContact *contacts);
static inline void
CircleSegmentQuery(cpShape *shape, cpVect center, cpFloat r1, cpVect a, cpVect b, cpFloat r2, cpSegmentQueryInfo *info)
{
cpVect da = cpvsub(a, center);
cpVect db = cpvsub(b, center);
cpFloat rsum = r1 + r2;
cpFloat qa = cpvdot(da, da) - 2.0f*cpvdot(da, db) + cpvdot(db, db);
cpFloat qb = cpvdot(da, db) - cpvdot(da, da);
cpFloat det = qb*qb - qa*(cpvdot(da, da) - rsum*rsum);
if(det >= 0.0f){
cpFloat t = (-qb - cpfsqrt(det))/(qa);
if(0.0f<= t && t <= 1.0f){
cpVect n = cpvnormalize(cpvlerp(da, db, t));
info->shape = shape;
info->point = cpvsub(cpvlerp(a, b, t), cpvmult(n, r2));
info->normal = n;
info->alpha = t;
}
}
}
static inline cpBool
cpShapeFilterReject(cpShapeFilter a, cpShapeFilter b)
{
// Reject the collision if:
return (
// They are in the same non-zero group.
(a.group != 0 && a.group == b.group) ||
// One of the category/mask combinations fails.
(a.categories & b.mask) == 0 ||
(b.categories & a.mask) == 0
);
}
void cpLoopIndexes(const cpVect *verts, int count, int *start, int *end);
//MARK: Constraints
// TODO naming conventions here
typedef void (*cpConstraintPreStepImpl)(cpConstraint *constraint, cpFloat dt);
typedef void (*cpConstraintApplyCachedImpulseImpl)(cpConstraint *constraint, cpFloat dt_coef);
typedef void (*cpConstraintApplyImpulseImpl)(cpConstraint *constraint, cpFloat dt);
typedef cpFloat (*cpConstraintGetImpulseImpl)(cpConstraint *constraint);
typedef struct cpConstraintClass {
cpConstraintPreStepImpl preStep;
cpConstraintApplyCachedImpulseImpl applyCachedImpulse;
cpConstraintApplyImpulseImpl applyImpulse;
cpConstraintGetImpulseImpl getImpulse;
} cpConstraintClass;
struct cpConstraint {
const cpConstraintClass *klass;
cpSpace *space;
cpBody *a, *b;
cpConstraint *next_a, *next_b;
cpFloat maxForce;
cpFloat errorBias;
cpFloat maxBias;
cpBool collideBodies;
cpConstraintPreSolveFunc preSolve;
cpConstraintPostSolveFunc postSolve;
cpDataPointer userData;
};
struct cpPinJoint {
cpConstraint constraint;
cpVect anchorA, anchorB;
cpFloat dist;
cpVect r1, r2;
cpVect n;
cpFloat nMass;
cpFloat jnAcc;
cpFloat bias;
};
struct cpSlideJoint {
cpConstraint constraint;
cpVect anchorA, anchorB;
cpFloat min, max;
cpVect r1, r2;
cpVect n;
cpFloat nMass;
cpFloat jnAcc;
cpFloat bias;
};
struct cpPivotJoint {
cpConstraint constraint;
cpVect anchorA, anchorB;
cpVect r1, r2;
cpMat2x2 k;
cpVect jAcc;
cpVect bias;
};
struct cpGrooveJoint {
cpConstraint constraint;
cpVect grv_n, grv_a, grv_b;
cpVect anchorB;
cpVect grv_tn;
cpFloat clamp;
cpVect r1, r2;
cpMat2x2 k;
cpVect jAcc;
cpVect bias;
};
struct cpDampedSpring {
cpConstraint constraint;
cpVect anchorA, anchorB;
cpFloat restLength;
cpFloat stiffness;
cpFloat damping;
cpDampedSpringForceFunc springForceFunc;
cpFloat target_vrn;
cpFloat v_coef;
cpVect r1, r2;
cpFloat nMass;
cpVect n;
cpFloat jAcc;
};
struct cpDampedRotarySpring {
cpConstraint constraint;
cpFloat restAngle;
cpFloat stiffness;
cpFloat damping;
cpDampedRotarySpringTorqueFunc springTorqueFunc;
cpFloat target_wrn;
cpFloat w_coef;
cpFloat iSum;
cpFloat jAcc;
};
struct cpRotaryLimitJoint {
cpConstraint constraint;
cpFloat min, max;
cpFloat iSum;
cpFloat bias;
cpFloat jAcc;
};
struct cpRatchetJoint {
cpConstraint constraint;
cpFloat angle, phase, ratchet;
cpFloat iSum;
cpFloat bias;
cpFloat jAcc;
};
struct cpGearJoint {
cpConstraint constraint;
cpFloat phase, ratio;
cpFloat ratio_inv;
cpFloat iSum;
cpFloat bias;
cpFloat jAcc;
};
struct cpSimpleMotor {
cpConstraint constraint;
cpFloat rate;
cpFloat iSum;
cpFloat jAcc;
};
void cpConstraintInit(cpConstraint *constraint, const struct cpConstraintClass *klass, cpBody *a, cpBody *b);
static inline void
cpConstraintActivateBodies(cpConstraint *constraint)
{
cpBody *a = constraint->a; cpBodyActivate(a);
cpBody *b = constraint->b; cpBodyActivate(b);
}
static inline cpVect
relative_velocity(cpBody *a, cpBody *b, cpVect r1, cpVect r2){
cpVect v1_sum = cpvadd(a->CP_PRIVATE(v), cpvmult(cpvperp(r1), a->CP_PRIVATE(w)));
cpVect v2_sum = cpvadd(b->CP_PRIVATE(v), cpvmult(cpvperp(r2), b->CP_PRIVATE(w)));
return cpvsub(v2_sum, v1_sum);
}
static inline cpFloat
normal_relative_velocity(cpBody *a, cpBody *b, cpVect r1, cpVect r2, cpVect n){
return cpvdot(relative_velocity(a, b, r1, r2), n);
}
static inline void
apply_impulse(cpBody *body, cpVect j, cpVect r){
body->CP_PRIVATE(v) = cpvadd(body->CP_PRIVATE(v), cpvmult(j, body->CP_PRIVATE(m_inv)));
body->CP_PRIVATE(w) += body->CP_PRIVATE(i_inv)*cpvcross(r, j);
}
static inline void
apply_impulses(cpBody *a , cpBody *b, cpVect r1, cpVect r2, cpVect j)
{
apply_impulse(a, cpvneg(j), r1);
apply_impulse(b, j, r2);
}
static inline void
apply_bias_impulse(cpBody *body, cpVect j, cpVect r)
{
body->CP_PRIVATE(v_bias) = cpvadd(body->CP_PRIVATE(v_bias), cpvmult(j, body->CP_PRIVATE(m_inv)));
body->CP_PRIVATE(w_bias) += body->CP_PRIVATE(i_inv)*cpvcross(r, j);
}
static inline void
apply_bias_impulses(cpBody *a , cpBody *b, cpVect r1, cpVect r2, cpVect j)
{
apply_bias_impulse(a, cpvneg(j), r1);
apply_bias_impulse(b, j, r2);
}
static inline cpFloat
k_scalar_body(cpBody *body, cpVect r, cpVect n)
{
cpFloat rcn = cpvcross(r, n);
return body->CP_PRIVATE(m_inv) + body->CP_PRIVATE(i_inv)*rcn*rcn;
}
static inline cpFloat
k_scalar(cpBody *a, cpBody *b, cpVect r1, cpVect r2, cpVect n)
{
cpFloat value = k_scalar_body(a, r1, n) + k_scalar_body(b, r2, n);
cpAssertSoft(value != 0.0, "Unsolvable collision or constraint.");
return value;
}
static inline cpMat2x2
k_tensor(cpBody *a, cpBody *b, cpVect r1, cpVect r2)
{
cpFloat m_sum = a->CP_PRIVATE(m_inv) + b->CP_PRIVATE(m_inv);
// start with Identity*m_sum
cpFloat k11 = m_sum, k12 = 0.0f;
cpFloat k21 = 0.0f, k22 = m_sum;
// add the influence from r1
cpFloat a_i_inv = a->CP_PRIVATE(i_inv);
cpFloat r1xsq = r1.x * r1.x * a_i_inv;
cpFloat r1ysq = r1.y * r1.y * a_i_inv;
cpFloat r1nxy = -r1.x * r1.y * a_i_inv;
k11 += r1ysq; k12 += r1nxy;
k21 += r1nxy; k22 += r1xsq;
// add the influnce from r2
cpFloat b_i_inv = b->CP_PRIVATE(i_inv);
cpFloat r2xsq = r2.x * r2.x * b_i_inv;
cpFloat r2ysq = r2.y * r2.y * b_i_inv;
cpFloat r2nxy = -r2.x * r2.y * b_i_inv;
k11 += r2ysq; k12 += r2nxy;
k21 += r2nxy; k22 += r2xsq;
// invert
cpFloat det = k11*k22 - k12*k21;
cpAssertSoft(det != 0.0, "Unsolvable constraint.");
cpFloat det_inv = 1.0f/det;
return cpMat2x2New(
k22*det_inv, -k12*det_inv,
-k21*det_inv, k11*det_inv
);
}
static inline cpFloat
bias_coef(cpFloat errorBias, cpFloat dt)
{
return 1.0f - cpfpow(errorBias, dt);
}
//MARK: Spaces
typedef struct cpContactBufferHeader cpContactBufferHeader;
typedef void (*cpSpaceArbiterApplyImpulseFunc)(cpArbiter *arb);
struct cpSpace {
int iterations;
cpVect gravity;
cpFloat damping;
cpFloat idleSpeedThreshold;
cpFloat sleepTimeThreshold;
cpFloat collisionSlop;
cpFloat collisionBias;
cpTimestamp collisionPersistence;
cpDataPointer userData;
cpTimestamp stamp;
cpFloat curr_dt;
cpArray *dynamicBodies;
cpArray *staticBodies;
cpArray *rousedBodies;
cpArray *sleepingComponents;
cpHashValue shapeIDCounter;
cpSpatialIndex *staticShapes;
cpSpatialIndex *dynamicShapes;
cpArray *constraints;
cpArray *arbiters;
cpContactBufferHeader *contactBuffersHead;
cpHashSet *cachedArbiters;
cpArray *pooledArbiters;
cpArray *allocatedBuffers;
unsigned int locked;
cpBool usesWildcards;
cpHashSet *collisionHandlers;
cpCollisionHandler defaultHandler;
cpBool skipPostStep;
cpArray *postStepCallbacks;
cpBody *staticBody;
cpBody _staticBody;
};
#define cpAssertSpaceUnlocked(space) \
cpAssertHard(!space->locked, \
"This operation cannot be done safely during a call to cpSpaceStep() or during a query. " \
"Put these calls into a post-step callback." \
);
void cpSpaceSetStaticBody(cpSpace *space, cpBody *body);
extern cpCollisionHandler cpCollisionHandlerDoNothing;
void cpSpaceProcessComponents(cpSpace *space, cpFloat dt);
void cpSpacePushFreshContactBuffer(cpSpace *space);
struct cpContact *cpContactBufferGetArray(cpSpace *space);
void cpSpacePushContacts(cpSpace *space, int count);
typedef struct cpPostStepCallback {
cpPostStepFunc func;
void *key;
void *data;
} cpPostStepCallback;
cpPostStepCallback *cpSpaceGetPostStepCallback(cpSpace *space, void *key);
cpBool cpSpaceArbiterSetFilter(cpArbiter *arb, cpSpace *space);
void cpSpaceFilterArbiters(cpSpace *space, cpBody *body, cpShape *filter);
void cpSpaceActivateBody(cpSpace *space, cpBody *body);
void cpSpaceLock(cpSpace *space);
void cpSpaceUnlock(cpSpace *space, cpBool runPostStep);
static inline void
cpSpaceUncacheArbiter(cpSpace *space, cpArbiter *arb)
{
const cpShape *a = arb->a, *b = arb->b;
const cpShape *shape_pair[] = {a, b};
cpHashValue arbHashID = CP_HASH_PAIR((cpHashValue)a, (cpHashValue)b);
cpHashSetRemove(space->cachedArbiters, arbHashID, shape_pair);
cpArrayDeleteObj(space->arbiters, arb);
}
static inline cpArray *
cpSpaceArrayForBodyType(cpSpace *space, cpBodyType type)
{
return (type == CP_BODY_TYPE_STATIC ? space->staticBodies : space->dynamicBodies);
}
void cpShapeUpdateFunc(cpShape *shape, void *unused);
cpCollisionID cpSpaceCollideShapes(cpShape *a, cpShape *b, cpCollisionID id, cpSpace *space);
//MARK: Foreach loops
static inline cpConstraint *
cpConstraintNext(cpConstraint *node, cpBody *body)
{
return (node->a == body ? node->next_a : node->next_b);
}
#define CP_BODY_FOREACH_CONSTRAINT(bdy, var)\
for(cpConstraint *var = bdy->constraintList; var; var = cpConstraintNext(var, bdy))
static inline cpArbiter *
cpArbiterNext(cpArbiter *node, cpBody *body)
{
return (node->body_a == body ? node->thread_a.next : node->thread_b.next);
}
#define CP_BODY_FOREACH_ARBITER(bdy, var)\
for(cpArbiter *var = bdy->arbiterList; var; var = cpArbiterNext(var, bdy))
#define CP_BODY_FOREACH_SHAPE(body, var)\
for(cpShape *var = body->shapeList; var; var = var->next)
#define CP_BODY_FOREACH_COMPONENT(root, var)\
for(cpBody *var = root; var; var = var->sleeping.next)
#endif