cocos-engine-external/sources/rtm/packing/quatf.h

100 lines
5.0 KiB
C++

#pragma once
////////////////////////////////////////////////////////////////////////////////
// The MIT License (MIT)
//
// Copyright (c) 2019 Nicholas Frechette & Realtime Math contributors
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
////////////////////////////////////////////////////////////////////////////////
#include "rtm/math.h"
#include "rtm/quatf.h"
#include "rtm/vector4f.h"
#include "rtm/impl/compiler_utils.h"
RTM_IMPL_FILE_PRAGMA_PUSH
namespace rtm
{
//////////////////////////////////////////////////////////////////////////
// Returns the quaternion on the hypersphere with a positive [w] component
// that represents the same 3D rotation as the input.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE quatf RTM_SIMD_CALL quat_ensure_positive_w(quatf_arg0 input) RTM_NO_EXCEPT
{
#if defined(RTM_SSE2_INTRINSICS)
constexpr __m128 sign_bit = { -0.0F, -0.0F, -0.0F, -0.0F };
const __m128 input_sign = _mm_and_ps(input, sign_bit);
const __m128 bias = _mm_shuffle_ps(input_sign, input_sign, _MM_SHUFFLE(3, 3, 3, 3));
return _mm_xor_ps(input, bias);
#elif defined(RTM_NEON_INTRINSICS)
alignas(16) constexpr uint32_t sign_bit_i[4] = { 0x80000000U, 0x80000000U, 0x80000000U, 0x80000000U };
const uint32x4_t sign_bit = *reinterpret_cast<const uint32x4_t*>(&sign_bit_i[0]);
const uint32x4_t input_u32 = vreinterpretq_u32_f32(input);
const uint32x4_t input_sign = vandq_u32(input_u32, sign_bit);
const uint32x4_t bias = vmovq_n_f32(vgetq_lane_f32(input_sign, 3));
return vreinterpretq_f32_u32(veorq_u32(input_u32, bias));
#else
return quat_get_w(input) >= 0.f ? input : quat_neg(input);
#endif
}
//////////////////////////////////////////////////////////////////////////
// Returns a quaternion constructed from a vector3 representing the [xyz]
// components while reconstructing the [w] component by assuming it is positive.
//////////////////////////////////////////////////////////////////////////
RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE quatf RTM_SIMD_CALL quat_from_positive_w(vector4f_arg0 input) RTM_NO_EXCEPT
{
#if defined(RTM_SSE2_INTRINSICS)
const __m128i abs_mask = _mm_set_epi32(0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL);
__m128 x2y2z2 = _mm_mul_ps(input, input);
__m128 one = _mm_set_ss(1.0F);
__m128 w_squared = _mm_sub_ss(_mm_sub_ss(_mm_sub_ss(one, x2y2z2), _mm_shuffle_ps(x2y2z2, x2y2z2, _MM_SHUFFLE(1, 1, 1, 1))), _mm_shuffle_ps(x2y2z2, x2y2z2, _MM_SHUFFLE(2, 2, 2, 2)));
w_squared = _mm_and_ps(w_squared, _mm_castsi128_ps(abs_mask));
__m128 w = _mm_sqrt_ss(w_squared);
#if defined(RTM_SSE4_INTRINSICS)
return _mm_insert_ps(input, w, 0x30);
#else
__m128 input_wyzx = _mm_shuffle_ps(input, input, _MM_SHUFFLE(0, 2, 1, 3));
__m128 result_wyzx = _mm_move_ss(input_wyzx, w);
return _mm_shuffle_ps(result_wyzx, result_wyzx, _MM_SHUFFLE(0, 2, 1, 3));
#endif
#elif defined(RTM_NEON_INTRINSICS) && 0
// TODO: This is slower on ARMv7-A, measure again on ARM64, fewer instructions but the first
// sub is dependent on the result of the mul where the C impl below pipelines a bit better it seems
float32x4_t x2y2z2 = vmulq_f32(input, input);
float w_squared = ((1.0F - vgetq_lane_f32(x2y2z2, 0)) - vgetq_lane_f32(x2y2z2, 1)) - vgetq_lane_f32(x2y2z2, 2);
float w = rtm::scalar_sqrt(rtm::scalar_abs(w_squared));
return vsetq_lane_f32(w, input, 3);
#else
// Operation order is important here, due to rounding, ((1.0 - (X*X)) - Y*Y) - Z*Z is more accurate than 1.0 - dot3(xyz, xyz)
float w_squared = ((1.0F - vector_get_x(input) * vector_get_x(input)) - vector_get_y(input) * vector_get_y(input)) - vector_get_z(input) * vector_get_z(input);
// w_squared can be negative either due to rounding or due to quantization imprecision, we take the absolute value
// to ensure the resulting quaternion is always normalized with a positive W component
float w = scalar_sqrt(scalar_abs(w_squared));
return quat_set_w(vector_to_quat(input), w);
#endif
}
}
RTM_IMPL_FILE_PRAGMA_POP