#pragma once //////////////////////////////////////////////////////////////////////////////// // The MIT License (MIT) // // Copyright (c) 2017 Nicholas Frechette & Animation Compression Library contributors // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. //////////////////////////////////////////////////////////////////////////////// #include "acl/core/iallocator.h" #include "acl/core/impl/compiler_utils.h" #include "acl/core/error.h" #include "acl/core/track_formats.h" #include "acl/core/utils.h" #include "acl/core/variable_bit_rates.h" #include "acl/math/quat_packing.h" #include "acl/math/vector4_packing.h" #include "acl/compression/impl/track_stream.h" #include "acl/compression/impl/normalize_streams.h" #include "acl/compression/impl/convert_rotation_streams.h" #include #include #include #include ACL_IMPL_FILE_PRAGMA_PUSH namespace acl { namespace acl_impl { inline rtm::vector4f RTM_SIMD_CALL load_rotation_sample(const uint8_t* ptr, rotation_format8 format, uint8_t bit_rate) { switch (format) { case rotation_format8::quatf_full: return unpack_vector4_128(ptr); case rotation_format8::quatf_drop_w_full: return unpack_vector3_96_unsafe(ptr); case rotation_format8::quatf_drop_w_variable: ACL_ASSERT(bit_rate != k_invalid_bit_rate, "Invalid bit rate!"); if (is_constant_bit_rate(bit_rate)) { return unpack_vector3_u48_unsafe(ptr); } else if (is_raw_bit_rate(bit_rate)) return unpack_vector3_96_unsafe(ptr); else { const uint32_t num_bits_at_bit_rate = get_num_bits_at_bit_rate(bit_rate); return unpack_vector3_uXX_unsafe(num_bits_at_bit_rate, ptr, 0); } default: ACL_ASSERT(false, "Invalid or unsupported rotation format: %s", get_rotation_format_name(format)); return rtm::vector_zero(); } } inline rtm::vector4f RTM_SIMD_CALL load_vector_sample(const uint8_t* ptr, vector_format8 format, uint8_t bit_rate) { switch (format) { case vector_format8::vector3f_full: return unpack_vector3_96_unsafe(ptr); case vector_format8::vector3f_variable: ACL_ASSERT(bit_rate != k_invalid_bit_rate, "Invalid bit rate!"); if (is_constant_bit_rate(bit_rate)) return unpack_vector3_u48_unsafe(ptr); else if (is_raw_bit_rate(bit_rate)) return unpack_vector3_96_unsafe(ptr); else { const uint32_t num_bits_at_bit_rate = get_num_bits_at_bit_rate(bit_rate); return unpack_vector3_uXX_unsafe(num_bits_at_bit_rate, ptr, 0); } default: ACL_ASSERT(false, "Invalid or unsupported vector format: %s", get_vector_format_name(format)); return rtm::vector_zero(); } } inline rtm::quatf RTM_SIMD_CALL rotation_to_quat_32(rtm::vector4f_arg0 rotation, rotation_format8 format) { switch (format) { case rotation_format8::quatf_full: return rtm::vector_to_quat(rotation); case rotation_format8::quatf_drop_w_full: case rotation_format8::quatf_drop_w_variable: return rtm::quat_from_positive_w(rotation); default: ACL_ASSERT(false, "Invalid or unsupported rotation format: %s", get_rotation_format_name(format)); return rtm::quat_identity(); } } // Gets a rotation sample from the format/bit rate stored inline rtm::quatf RTM_SIMD_CALL get_rotation_sample(const BoneStreams& bone_steams, uint32_t sample_index) { const SegmentContext* segment = bone_steams.segment; const clip_context* clip = segment->clip; const rotation_format8 format = bone_steams.rotations.get_rotation_format(); const uint8_t bit_rate = bone_steams.rotations.get_bit_rate(); if (format == rotation_format8::quatf_drop_w_variable && is_constant_bit_rate(bit_rate)) sample_index = 0; const uint8_t* quantized_ptr = bone_steams.rotations.get_raw_sample_ptr(sample_index); rtm::vector4f packed_rotation = acl_impl::load_rotation_sample(quantized_ptr, format, bit_rate); if (!bone_steams.is_rotation_constant && clip->are_rotations_normalized && !is_raw_bit_rate(bit_rate)) { if (segment->are_rotations_normalized && !is_constant_bit_rate(bit_rate)) { const BoneRanges& segment_bone_range = segment->ranges[bone_steams.bone_index]; const rtm::vector4f segment_range_min = segment_bone_range.rotation.get_min(); const rtm::vector4f segment_range_extent = segment_bone_range.rotation.get_extent(); packed_rotation = rtm::vector_mul_add(packed_rotation, segment_range_extent, segment_range_min); } const BoneRanges& clip_bone_range = clip->ranges[bone_steams.bone_index]; const rtm::vector4f clip_range_min = clip_bone_range.rotation.get_min(); const rtm::vector4f clip_range_extent = clip_bone_range.rotation.get_extent(); packed_rotation = rtm::vector_mul_add(packed_rotation, clip_range_extent, clip_range_min); } return acl_impl::rotation_to_quat_32(packed_rotation, format); } // Gets a rotation sample at the specified bit rate inline rtm::quatf RTM_SIMD_CALL get_rotation_sample(const BoneStreams& bone_steams, const BoneStreams& raw_bone_steams, uint32_t sample_index, uint8_t bit_rate) { const SegmentContext* segment = bone_steams.segment; const clip_context* clip = segment->clip; const rotation_format8 format = bone_steams.rotations.get_rotation_format(); rtm::vector4f rotation; if (is_constant_bit_rate(bit_rate)) { const uint8_t* quantized_ptr = raw_bone_steams.rotations.get_raw_sample_ptr(segment->clip_sample_offset); rotation = acl_impl::load_rotation_sample(quantized_ptr, rotation_format8::quatf_full, k_invalid_bit_rate); rotation = convert_rotation(rotation, rotation_format8::quatf_full, format); } else if (is_raw_bit_rate(bit_rate)) { const uint8_t* quantized_ptr = raw_bone_steams.rotations.get_raw_sample_ptr(segment->clip_sample_offset + sample_index); rotation = acl_impl::load_rotation_sample(quantized_ptr, rotation_format8::quatf_full, k_invalid_bit_rate); rotation = convert_rotation(rotation, rotation_format8::quatf_full, format); } else { const uint8_t* quantized_ptr = bone_steams.rotations.get_raw_sample_ptr(sample_index); rotation = acl_impl::load_rotation_sample(quantized_ptr, format, 0); } // Pack and unpack at our desired bit rate const uint32_t num_bits_at_bit_rate = get_num_bits_at_bit_rate(bit_rate); rtm::vector4f packed_rotation; if (is_constant_bit_rate(bit_rate)) { const BoneRanges& clip_bone_range = segment->clip->ranges[bone_steams.bone_index]; const rtm::vector4f normalized_rotation = normalize_sample(rotation, clip_bone_range.rotation); packed_rotation = decay_vector3_u48(normalized_rotation); } else if (is_raw_bit_rate(bit_rate)) packed_rotation = rotation; else packed_rotation = decay_vector3_uXX(rotation, num_bits_at_bit_rate); if (!is_raw_bit_rate(bit_rate)) { if (segment->are_rotations_normalized && !is_constant_bit_rate(bit_rate)) { const BoneRanges& segment_bone_range = segment->ranges[bone_steams.bone_index]; const rtm::vector4f segment_range_min = segment_bone_range.rotation.get_min(); const rtm::vector4f segment_range_extent = segment_bone_range.rotation.get_extent(); packed_rotation = rtm::vector_mul_add(packed_rotation, segment_range_extent, segment_range_min); } const BoneRanges& clip_bone_range = clip->ranges[bone_steams.bone_index]; const rtm::vector4f clip_range_min = clip_bone_range.rotation.get_min(); const rtm::vector4f clip_range_extent = clip_bone_range.rotation.get_extent(); packed_rotation = rtm::vector_mul_add(packed_rotation, clip_range_extent, clip_range_min); } return acl_impl::rotation_to_quat_32(packed_rotation, format); } // Gets a rotation sample with the desired format inline rtm::quatf RTM_SIMD_CALL get_rotation_sample(const BoneStreams& bone_steams, uint32_t sample_index, rotation_format8 desired_format) { const SegmentContext* segment = bone_steams.segment; const clip_context* clip = segment->clip; const uint8_t* quantized_ptr = bone_steams.rotations.get_raw_sample_ptr(sample_index); const rotation_format8 format = bone_steams.rotations.get_rotation_format(); const rtm::vector4f rotation = acl_impl::load_rotation_sample(quantized_ptr, format, 0); // Pack and unpack in our desired format rtm::vector4f packed_rotation; switch (desired_format) { case rotation_format8::quatf_full: case rotation_format8::quatf_drop_w_full: packed_rotation = rotation; break; default: ACL_ASSERT(false, "Invalid or unsupported rotation format: %s", get_rotation_format_name(desired_format)); packed_rotation = rtm::vector_zero(); break; } const bool are_rotations_normalized = clip->are_rotations_normalized && !bone_steams.is_rotation_constant; if (are_rotations_normalized) { if (segment->are_rotations_normalized) { const BoneRanges& segment_bone_range = segment->ranges[bone_steams.bone_index]; const rtm::vector4f segment_range_min = segment_bone_range.rotation.get_min(); const rtm::vector4f segment_range_extent = segment_bone_range.rotation.get_extent(); packed_rotation = rtm::vector_mul_add(packed_rotation, segment_range_extent, segment_range_min); } const BoneRanges& clip_bone_range = clip->ranges[bone_steams.bone_index]; const rtm::vector4f clip_range_min = clip_bone_range.rotation.get_min(); const rtm::vector4f clip_range_extent = clip_bone_range.rotation.get_extent(); packed_rotation = rtm::vector_mul_add(packed_rotation, clip_range_extent, clip_range_min); } return acl_impl::rotation_to_quat_32(packed_rotation, format); } // Gets a translation sample from the format/bit rate stored inline rtm::vector4f RTM_SIMD_CALL get_translation_sample(const BoneStreams& bone_steams, uint32_t sample_index) { const SegmentContext* segment = bone_steams.segment; const clip_context* clip = segment->clip; const bool are_translations_normalized = clip->are_translations_normalized; const vector_format8 format = bone_steams.translations.get_vector_format(); const uint8_t bit_rate = bone_steams.translations.get_bit_rate(); if (format == vector_format8::vector3f_variable && is_constant_bit_rate(bit_rate)) sample_index = 0; const uint8_t* quantized_ptr = bone_steams.translations.get_raw_sample_ptr(sample_index); rtm::vector4f packed_translation = acl_impl::load_vector_sample(quantized_ptr, format, bit_rate); if (!bone_steams.is_translation_constant && are_translations_normalized && !is_raw_bit_rate(bit_rate)) { if (segment->are_translations_normalized && !is_constant_bit_rate(bit_rate)) { const BoneRanges& segment_bone_range = segment->ranges[bone_steams.bone_index]; const rtm::vector4f segment_range_min = segment_bone_range.translation.get_min(); const rtm::vector4f segment_range_extent = segment_bone_range.translation.get_extent(); packed_translation = rtm::vector_mul_add(packed_translation, segment_range_extent, segment_range_min); } const BoneRanges& clip_bone_range = clip->ranges[bone_steams.bone_index]; const rtm::vector4f clip_range_min = clip_bone_range.translation.get_min(); const rtm::vector4f clip_range_extent = clip_bone_range.translation.get_extent(); packed_translation = rtm::vector_mul_add(packed_translation, clip_range_extent, clip_range_min); } return packed_translation; } // Gets a translation sample at the specified bit rate inline rtm::vector4f RTM_SIMD_CALL get_translation_sample(const BoneStreams& bone_steams, const BoneStreams& raw_bone_steams, uint32_t sample_index, uint8_t bit_rate) { const SegmentContext* segment = bone_steams.segment; const clip_context* clip = segment->clip; const vector_format8 format = bone_steams.translations.get_vector_format(); const uint8_t* quantized_ptr; if (is_constant_bit_rate(bit_rate)) quantized_ptr = raw_bone_steams.translations.get_raw_sample_ptr(segment->clip_sample_offset); else if (is_raw_bit_rate(bit_rate)) quantized_ptr = raw_bone_steams.translations.get_raw_sample_ptr(segment->clip_sample_offset + sample_index); else quantized_ptr = bone_steams.translations.get_raw_sample_ptr(sample_index); const rtm::vector4f translation = acl_impl::load_vector_sample(quantized_ptr, format, 0); ACL_ASSERT(clip->are_translations_normalized, "Translations must be normalized to support variable bit rates."); // Pack and unpack at our desired bit rate rtm::vector4f packed_translation; if (is_constant_bit_rate(bit_rate)) { ACL_ASSERT(segment->are_translations_normalized, "Translations must be normalized to support variable bit rates."); const BoneRanges& clip_bone_range = segment->clip->ranges[bone_steams.bone_index]; const rtm::vector4f normalized_translation = normalize_sample(translation, clip_bone_range.translation); packed_translation = decay_vector3_u48(normalized_translation); } else if (is_raw_bit_rate(bit_rate)) packed_translation = translation; else { const uint32_t num_bits_at_bit_rate = get_num_bits_at_bit_rate(bit_rate); packed_translation = decay_vector3_uXX(translation, num_bits_at_bit_rate); } if (!is_raw_bit_rate(bit_rate)) { if (segment->are_translations_normalized && !is_constant_bit_rate(bit_rate)) { const BoneRanges& segment_bone_range = segment->ranges[bone_steams.bone_index]; const rtm::vector4f segment_range_min = segment_bone_range.translation.get_min(); const rtm::vector4f segment_range_extent = segment_bone_range.translation.get_extent(); packed_translation = rtm::vector_mul_add(packed_translation, segment_range_extent, segment_range_min); } const BoneRanges& clip_bone_range = clip->ranges[bone_steams.bone_index]; const rtm::vector4f clip_range_min = clip_bone_range.translation.get_min(); const rtm::vector4f clip_range_extent = clip_bone_range.translation.get_extent(); packed_translation = rtm::vector_mul_add(packed_translation, clip_range_extent, clip_range_min); } return packed_translation; } // Gets a translation sample with the desired format inline rtm::vector4f RTM_SIMD_CALL get_translation_sample(const BoneStreams& bone_steams, uint32_t sample_index, vector_format8 desired_format) { const SegmentContext* segment = bone_steams.segment; const clip_context* clip = segment->clip; const bool are_translations_normalized = clip->are_translations_normalized && !bone_steams.is_translation_constant; const uint8_t* quantized_ptr = bone_steams.translations.get_raw_sample_ptr(sample_index); const vector_format8 format = bone_steams.translations.get_vector_format(); const rtm::vector4f translation = acl_impl::load_vector_sample(quantized_ptr, format, 0); // Pack and unpack in our desired format rtm::vector4f packed_translation; switch (desired_format) { case vector_format8::vector3f_full: packed_translation = translation; break; default: ACL_ASSERT(false, "Invalid or unsupported vector format: %s", get_vector_format_name(desired_format)); packed_translation = rtm::vector_zero(); break; } if (are_translations_normalized) { if (segment->are_translations_normalized) { const BoneRanges& segment_bone_range = segment->ranges[bone_steams.bone_index]; rtm::vector4f segment_range_min = segment_bone_range.translation.get_min(); rtm::vector4f segment_range_extent = segment_bone_range.translation.get_extent(); packed_translation = rtm::vector_mul_add(packed_translation, segment_range_extent, segment_range_min); } const BoneRanges& clip_bone_range = clip->ranges[bone_steams.bone_index]; rtm::vector4f clip_range_min = clip_bone_range.translation.get_min(); rtm::vector4f clip_range_extent = clip_bone_range.translation.get_extent(); packed_translation = rtm::vector_mul_add(packed_translation, clip_range_extent, clip_range_min); } return packed_translation; } // Gets a scale sample from the format/bit rate stored inline rtm::vector4f RTM_SIMD_CALL get_scale_sample(const BoneStreams& bone_steams, uint32_t sample_index) { const SegmentContext* segment = bone_steams.segment; const clip_context* clip = segment->clip; const vector_format8 format = bone_steams.scales.get_vector_format(); const uint8_t bit_rate = bone_steams.scales.get_bit_rate(); if (format == vector_format8::vector3f_variable && is_constant_bit_rate(bit_rate)) sample_index = 0; const uint8_t* quantized_ptr = bone_steams.scales.get_raw_sample_ptr(sample_index); rtm::vector4f packed_scale = acl_impl::load_vector_sample(quantized_ptr, format, bit_rate); if (!bone_steams.is_scale_constant && clip->are_scales_normalized && !is_raw_bit_rate(bit_rate)) { if (segment->are_scales_normalized && !is_constant_bit_rate(bit_rate)) { const BoneRanges& segment_bone_range = segment->ranges[bone_steams.bone_index]; const rtm::vector4f segment_range_min = segment_bone_range.scale.get_min(); const rtm::vector4f segment_range_extent = segment_bone_range.scale.get_extent(); packed_scale = rtm::vector_mul_add(packed_scale, segment_range_extent, segment_range_min); } const BoneRanges& clip_bone_range = clip->ranges[bone_steams.bone_index]; const rtm::vector4f clip_range_min = clip_bone_range.scale.get_min(); const rtm::vector4f clip_range_extent = clip_bone_range.scale.get_extent(); packed_scale = rtm::vector_mul_add(packed_scale, clip_range_extent, clip_range_min); } return packed_scale; } // Gets a scale sample at the specified bit rate inline rtm::vector4f RTM_SIMD_CALL get_scale_sample(const BoneStreams& bone_steams, const BoneStreams& raw_bone_steams, uint32_t sample_index, uint8_t bit_rate) { const SegmentContext* segment = bone_steams.segment; const clip_context* clip = segment->clip; const vector_format8 format = bone_steams.scales.get_vector_format(); const uint8_t* quantized_ptr; if (is_constant_bit_rate(bit_rate)) quantized_ptr = raw_bone_steams.scales.get_raw_sample_ptr(segment->clip_sample_offset); else if (is_raw_bit_rate(bit_rate)) quantized_ptr = raw_bone_steams.scales.get_raw_sample_ptr(segment->clip_sample_offset + sample_index); else quantized_ptr = bone_steams.scales.get_raw_sample_ptr(sample_index); const rtm::vector4f scale = acl_impl::load_vector_sample(quantized_ptr, format, 0); ACL_ASSERT(clip->are_scales_normalized, "Scales must be normalized to support variable bit rates."); // Pack and unpack at our desired bit rate rtm::vector4f packed_scale; if (is_constant_bit_rate(bit_rate)) { ACL_ASSERT(segment->are_scales_normalized, "Translations must be normalized to support variable bit rates."); const BoneRanges& clip_bone_range = segment->clip->ranges[bone_steams.bone_index]; const rtm::vector4f normalized_scale = normalize_sample(scale, clip_bone_range.scale); packed_scale = decay_vector3_u48(normalized_scale); } else if (is_raw_bit_rate(bit_rate)) packed_scale = scale; else { const uint32_t num_bits_at_bit_rate = get_num_bits_at_bit_rate(bit_rate); packed_scale = decay_vector3_uXX(scale, num_bits_at_bit_rate); } if (!is_raw_bit_rate(bit_rate)) { if (segment->are_scales_normalized && !is_constant_bit_rate(bit_rate)) { const BoneRanges& segment_bone_range = segment->ranges[bone_steams.bone_index]; const rtm::vector4f segment_range_min = segment_bone_range.scale.get_min(); const rtm::vector4f segment_range_extent = segment_bone_range.scale.get_extent(); packed_scale = rtm::vector_mul_add(packed_scale, segment_range_extent, segment_range_min); } const BoneRanges& clip_bone_range = clip->ranges[bone_steams.bone_index]; const rtm::vector4f clip_range_min = clip_bone_range.scale.get_min(); const rtm::vector4f clip_range_extent = clip_bone_range.scale.get_extent(); packed_scale = rtm::vector_mul_add(packed_scale, clip_range_extent, clip_range_min); } return packed_scale; } // Gets a scale sample with the desired format inline rtm::vector4f RTM_SIMD_CALL get_scale_sample(const BoneStreams& bone_steams, uint32_t sample_index, vector_format8 desired_format) { const SegmentContext* segment = bone_steams.segment; const clip_context* clip = segment->clip; const bool are_scales_normalized = clip->are_scales_normalized && !bone_steams.is_scale_constant; const uint8_t* quantized_ptr = bone_steams.scales.get_raw_sample_ptr(sample_index); const vector_format8 format = bone_steams.scales.get_vector_format(); const rtm::vector4f scale = acl_impl::load_vector_sample(quantized_ptr, format, 0); // Pack and unpack in our desired format rtm::vector4f packed_scale; switch (desired_format) { case vector_format8::vector3f_full: packed_scale = scale; break; default: ACL_ASSERT(false, "Invalid or unsupported vector format: %s", get_vector_format_name(desired_format)); packed_scale = scale; break; } if (are_scales_normalized) { if (segment->are_scales_normalized) { const BoneRanges& segment_bone_range = segment->ranges[bone_steams.bone_index]; rtm::vector4f segment_range_min = segment_bone_range.scale.get_min(); rtm::vector4f segment_range_extent = segment_bone_range.scale.get_extent(); packed_scale = rtm::vector_mul_add(packed_scale, segment_range_extent, segment_range_min); } const BoneRanges& clip_bone_range = clip->ranges[bone_steams.bone_index]; rtm::vector4f clip_range_min = clip_bone_range.scale.get_min(); rtm::vector4f clip_range_extent = clip_bone_range.scale.get_extent(); packed_scale = rtm::vector_mul_add(packed_scale, clip_range_extent, clip_range_min); } return packed_scale; } struct sample_context { uint32_t track_index; uint32_t sample_key; float sample_time; BoneBitRate bit_rates; }; inline uint32_t get_uniform_sample_key(const SegmentContext& segment, float sample_time) { uint32_t key0 = 0; uint32_t key1 = 0; float interpolation_alpha = 0.0F; // Our samples are uniform, grab the nearest samples const clip_context* clip = segment.clip; find_linear_interpolation_samples_with_sample_rate(clip->num_samples, clip->sample_rate, sample_time, sample_rounding_policy::nearest, key0, key1, interpolation_alpha); // Offset for the current segment and clamp key0 = key0 - segment.clip_sample_offset; if (key0 >= segment.num_samples) { key0 = 0; interpolation_alpha = 1.0F; } key1 = key1 - segment.clip_sample_offset; if (key1 >= segment.num_samples) { key1 = segment.num_samples - 1; interpolation_alpha = 0.0F; } // When we sample uniformly, we always round to the nearest sample. // As such, we don't need to interpolate. return interpolation_alpha == 0.0F ? key0 : key1; } template ACL_FORCE_INLINE rtm::quatf RTM_SIMD_CALL sample_rotation(const sample_context& context, const BoneStreams& bone_stream) { rtm::quatf rotation; if (bone_stream.is_rotation_default) rotation = rtm::quat_identity(); else if (bone_stream.is_rotation_constant) rotation = rtm::quat_normalize(get_rotation_sample(bone_stream, 0)); else { uint32_t key0; uint32_t key1; float interpolation_alpha; if (static_condition::test()) { const uint32_t num_samples = bone_stream.rotations.get_num_samples(); const float sample_rate = bone_stream.rotations.get_sample_rate(); find_linear_interpolation_samples_with_sample_rate(num_samples, sample_rate, context.sample_time, sample_rounding_policy::none, key0, key1, interpolation_alpha); } else { key0 = context.sample_key; key1 = 0; interpolation_alpha = 0.0F; } const rtm::quatf sample0 = get_rotation_sample(bone_stream, key0); if (static_condition::test()) { const rtm::quatf sample1 = get_rotation_sample(bone_stream, key1); rotation = rtm::quat_lerp(sample0, sample1, interpolation_alpha); } else rotation = rtm::quat_normalize(sample0); } return rotation; } template ACL_FORCE_INLINE rtm::quatf RTM_SIMD_CALL sample_rotation(const sample_context& context, const BoneStreams& bone_stream, const BoneStreams& raw_bone_stream, bool is_rotation_variable, rotation_format8 rotation_format) { rtm::quatf rotation; if (bone_stream.is_rotation_default) rotation = rtm::quat_identity(); else if (bone_stream.is_rotation_constant) { if (is_rotation_variable) rotation = get_rotation_sample(raw_bone_stream, 0); else rotation = get_rotation_sample(raw_bone_stream, 0, rotation_format); rotation = rtm::quat_normalize(rotation); } else { uint32_t key0; uint32_t key1; float interpolation_alpha; if (static_condition::test()) { const uint32_t num_samples = bone_stream.rotations.get_num_samples(); const float sample_rate = bone_stream.rotations.get_sample_rate(); find_linear_interpolation_samples_with_sample_rate(num_samples, sample_rate, context.sample_time, sample_rounding_policy::none, key0, key1, interpolation_alpha); } else { key0 = context.sample_key; key1 = 0; interpolation_alpha = 0.0F; } rtm::quatf sample0; rtm::quatf sample1; if (is_rotation_variable) { sample0 = get_rotation_sample(bone_stream, raw_bone_stream, key0, context.bit_rates.rotation); if (static_condition::test()) sample1 = get_rotation_sample(bone_stream, raw_bone_stream, key1, context.bit_rates.rotation); } else { sample0 = get_rotation_sample(bone_stream, key0, rotation_format); if (static_condition::test()) sample1 = get_rotation_sample(bone_stream, key1, rotation_format); } if (static_condition::test()) rotation = rtm::quat_lerp(sample0, sample1, interpolation_alpha); else rotation = rtm::quat_normalize(sample0); } return rotation; } template ACL_FORCE_INLINE rtm::vector4f RTM_SIMD_CALL sample_translation(const sample_context& context, const BoneStreams& bone_stream) { rtm::vector4f translation; if (bone_stream.is_translation_default) translation = rtm::vector_zero(); else if (bone_stream.is_translation_constant) translation = get_translation_sample(bone_stream, 0); else { uint32_t key0; uint32_t key1; float interpolation_alpha; if (static_condition::test()) { const uint32_t num_samples = bone_stream.translations.get_num_samples(); const float sample_rate = bone_stream.translations.get_sample_rate(); find_linear_interpolation_samples_with_sample_rate(num_samples, sample_rate, context.sample_time, sample_rounding_policy::none, key0, key1, interpolation_alpha); } else { key0 = context.sample_key; key1 = 0; interpolation_alpha = 0.0F; } const rtm::vector4f sample0 = get_translation_sample(bone_stream, key0); if (static_condition::test()) { const rtm::vector4f sample1 = get_translation_sample(bone_stream, key1); translation = rtm::vector_lerp(sample0, sample1, interpolation_alpha); } else translation = sample0; } return translation; } template ACL_FORCE_INLINE rtm::vector4f RTM_SIMD_CALL sample_translation(const sample_context& context, const BoneStreams& bone_stream, const BoneStreams& raw_bone_stream, bool is_translation_variable, vector_format8 translation_format) { rtm::vector4f translation; if (bone_stream.is_translation_default) translation = rtm::vector_zero(); else if (bone_stream.is_translation_constant) translation = get_translation_sample(raw_bone_stream, 0, vector_format8::vector3f_full); else { uint32_t key0; uint32_t key1; float interpolation_alpha; if (static_condition::test()) { const uint32_t num_samples = bone_stream.translations.get_num_samples(); const float sample_rate = bone_stream.translations.get_sample_rate(); find_linear_interpolation_samples_with_sample_rate(num_samples, sample_rate, context.sample_time, sample_rounding_policy::none, key0, key1, interpolation_alpha); } else { key0 = context.sample_key; key1 = 0; interpolation_alpha = 0.0F; } rtm::vector4f sample0; rtm::vector4f sample1; if (is_translation_variable) { sample0 = get_translation_sample(bone_stream, raw_bone_stream, key0, context.bit_rates.translation); if (static_condition::test()) sample1 = get_translation_sample(bone_stream, raw_bone_stream, key1, context.bit_rates.translation); } else { sample0 = get_translation_sample(bone_stream, key0, translation_format); if (static_condition::test()) sample1 = get_translation_sample(bone_stream, key1, translation_format); } if (static_condition::test()) translation = rtm::vector_lerp(sample0, sample1, interpolation_alpha); else translation = sample0; } return translation; } template ACL_FORCE_INLINE rtm::vector4f RTM_SIMD_CALL sample_scale(const sample_context& context, const BoneStreams& bone_stream, rtm::vector4f_arg0 default_scale) { rtm::vector4f scale; if (bone_stream.is_scale_default) scale = default_scale; else if (bone_stream.is_scale_constant) scale = get_scale_sample(bone_stream, 0); else { uint32_t key0; uint32_t key1; float interpolation_alpha; if (static_condition::test()) { const uint32_t num_samples = bone_stream.scales.get_num_samples(); const float sample_rate = bone_stream.scales.get_sample_rate(); find_linear_interpolation_samples_with_sample_rate(num_samples, sample_rate, context.sample_time, sample_rounding_policy::none, key0, key1, interpolation_alpha); } else { key0 = context.sample_key; key1 = 0; interpolation_alpha = 0.0F; } const rtm::vector4f sample0 = get_scale_sample(bone_stream, key0); if (static_condition::test()) { const rtm::vector4f sample1 = get_scale_sample(bone_stream, key1); scale = rtm::vector_lerp(sample0, sample1, interpolation_alpha); } else scale = sample0; } return scale; } template ACL_FORCE_INLINE rtm::vector4f RTM_SIMD_CALL sample_scale(const sample_context& context, const BoneStreams& bone_stream, const BoneStreams& raw_bone_stream, bool is_scale_variable, vector_format8 scale_format, rtm::vector4f_arg0 default_scale) { rtm::vector4f scale; if (bone_stream.is_scale_default) scale = default_scale; else if (bone_stream.is_scale_constant) scale = get_scale_sample(raw_bone_stream, 0, vector_format8::vector3f_full); else { uint32_t key0; uint32_t key1; float interpolation_alpha; if (static_condition::test()) { const uint32_t num_samples = bone_stream.scales.get_num_samples(); const float sample_rate = bone_stream.scales.get_sample_rate(); find_linear_interpolation_samples_with_sample_rate(num_samples, sample_rate, context.sample_time, sample_rounding_policy::none, key0, key1, interpolation_alpha); } else { key0 = context.sample_key; key1 = 0; interpolation_alpha = 0.0F; } rtm::vector4f sample0; rtm::vector4f sample1; if (is_scale_variable) { sample0 = get_scale_sample(bone_stream, raw_bone_stream, key0, context.bit_rates.scale); if (static_condition::test()) sample1 = get_scale_sample(bone_stream, raw_bone_stream, key1, context.bit_rates.scale); } else { sample0 = get_scale_sample(bone_stream, key0, scale_format); if (static_condition::test()) sample1 = get_scale_sample(bone_stream, key1, scale_format); } if (static_condition::test()) scale = rtm::vector_lerp(sample0, sample1, interpolation_alpha); else scale = sample0; } return scale; } inline void sample_streams(const BoneStreams* bone_streams, uint32_t num_bones, float sample_time, rtm::qvvf* out_local_pose) { const SegmentContext* segment_context = bone_streams->segment; const rtm::vector4f default_scale = get_default_scale(segment_context->clip->additive_format); const bool has_scale = segment_context->clip->has_scale; // With uniform sample distributions, we do not interpolate. uint32_t sample_key; if (segment_context->distribution == SampleDistribution8::Uniform) sample_key = get_uniform_sample_key(*segment_context, sample_time); else sample_key = 0; // Not used acl_impl::sample_context context; context.sample_key = sample_key; context.sample_time = sample_time; if (segment_context->distribution == SampleDistribution8::Uniform) { for (uint32_t bone_index = 0; bone_index < num_bones; ++bone_index) { context.track_index = bone_index; const BoneStreams& bone_stream = bone_streams[bone_index]; const rtm::quatf rotation = acl_impl::sample_rotation(context, bone_stream); const rtm::vector4f translation = acl_impl::sample_translation(context, bone_stream); const rtm::vector4f scale = has_scale ? acl_impl::sample_scale(context, bone_stream, default_scale) : default_scale; out_local_pose[bone_index] = rtm::qvv_set(rotation, translation, scale); } } else { for (uint32_t bone_index = 0; bone_index < num_bones; ++bone_index) { context.track_index = bone_index; const BoneStreams& bone_stream = bone_streams[bone_index]; const rtm::quatf rotation = acl_impl::sample_rotation(context, bone_stream); const rtm::vector4f translation = acl_impl::sample_translation(context, bone_stream); const rtm::vector4f scale = has_scale ? acl_impl::sample_scale(context, bone_stream, default_scale) : default_scale; out_local_pose[bone_index] = rtm::qvv_set(rotation, translation, scale); } } } inline void sample_stream(const BoneStreams* bone_streams, uint32_t num_bones, float sample_time, uint32_t bone_index, rtm::qvvf* out_local_pose) { (void)num_bones; const SegmentContext* segment_context = bone_streams->segment; const rtm::vector4f default_scale = get_default_scale(segment_context->clip->additive_format); const bool has_scale = segment_context->clip->has_scale; // With uniform sample distributions, we do not interpolate. uint32_t sample_key; if (segment_context->distribution == SampleDistribution8::Uniform) sample_key = get_uniform_sample_key(*segment_context, sample_time); else sample_key = 0; // Not used acl_impl::sample_context context; context.track_index = bone_index; context.sample_key = sample_key; context.sample_time = sample_time; const BoneStreams& bone_stream = bone_streams[bone_index]; rtm::quatf rotation; rtm::vector4f translation; rtm::vector4f scale; if (segment_context->distribution == SampleDistribution8::Uniform) { rotation = acl_impl::sample_rotation(context, bone_stream); translation = acl_impl::sample_translation(context, bone_stream); scale = has_scale ? acl_impl::sample_scale(context, bone_stream, default_scale) : default_scale; } else { rotation = acl_impl::sample_rotation(context, bone_stream); translation = acl_impl::sample_translation(context, bone_stream); scale = has_scale ? acl_impl::sample_scale(context, bone_stream, default_scale) : default_scale; } out_local_pose[bone_index] = rtm::qvv_set(rotation, translation, scale); } inline void sample_streams_hierarchical(const BoneStreams* bone_streams, uint32_t num_bones, float sample_time, uint32_t bone_index, rtm::qvvf* out_local_pose) { (void)num_bones; const SegmentContext* segment_context = bone_streams->segment; const rtm::vector4f default_scale = get_default_scale(segment_context->clip->additive_format); const bool has_scale = segment_context->clip->has_scale; // With uniform sample distributions, we do not interpolate. uint32_t sample_key; if (segment_context->distribution == SampleDistribution8::Uniform) sample_key = get_uniform_sample_key(*segment_context, sample_time); else sample_key = 0; // Not used acl_impl::sample_context context; context.sample_key = sample_key; context.sample_time = sample_time; if (segment_context->distribution == SampleDistribution8::Uniform) { uint32_t current_bone_index = bone_index; while (current_bone_index != k_invalid_track_index) { context.track_index = current_bone_index; const BoneStreams& bone_stream = bone_streams[current_bone_index]; const rtm::quatf rotation = acl_impl::sample_rotation(context, bone_stream); const rtm::vector4f translation = acl_impl::sample_translation(context, bone_stream); const rtm::vector4f scale = has_scale ? acl_impl::sample_scale(context, bone_stream, default_scale) : default_scale; out_local_pose[current_bone_index] = rtm::qvv_set(rotation, translation, scale); current_bone_index = bone_stream.parent_bone_index; } } else { uint32_t current_bone_index = bone_index; while (current_bone_index != k_invalid_track_index) { context.track_index = current_bone_index; const BoneStreams& bone_stream = bone_streams[current_bone_index]; const rtm::quatf rotation = acl_impl::sample_rotation(context, bone_stream); const rtm::vector4f translation = acl_impl::sample_translation(context, bone_stream); const rtm::vector4f scale = has_scale ? acl_impl::sample_scale(context, bone_stream, default_scale) : default_scale; out_local_pose[current_bone_index] = rtm::qvv_set(rotation, translation, scale); current_bone_index = bone_stream.parent_bone_index; } } } inline void sample_streams(const BoneStreams* bone_streams, const BoneStreams* raw_bone_steams, uint32_t num_bones, float sample_time, const BoneBitRate* bit_rates, rotation_format8 rotation_format, vector_format8 translation_format, vector_format8 scale_format, rtm::qvvf* out_local_pose) { const bool is_rotation_variable = is_rotation_format_variable(rotation_format); const bool is_translation_variable = is_vector_format_variable(translation_format); const bool is_scale_variable = is_vector_format_variable(scale_format); const SegmentContext* segment_context = bone_streams->segment; const rtm::vector4f default_scale = get_default_scale(segment_context->clip->additive_format); const bool has_scale = segment_context->clip->has_scale; // With uniform sample distributions, we do not interpolate. uint32_t sample_key; if (segment_context->distribution == SampleDistribution8::Uniform) sample_key = get_uniform_sample_key(*segment_context, sample_time); else sample_key = 0; // Not used acl_impl::sample_context context; context.sample_key = sample_key; context.sample_time = sample_time; if (segment_context->distribution == SampleDistribution8::Uniform) { for (uint32_t bone_index = 0; bone_index < num_bones; ++bone_index) { context.track_index = bone_index; context.bit_rates = bit_rates[bone_index]; const BoneStreams& bone_stream = bone_streams[bone_index]; const BoneStreams& raw_bone_steam = raw_bone_steams[bone_index]; const rtm::quatf rotation = acl_impl::sample_rotation(context, bone_stream, raw_bone_steam, is_rotation_variable, rotation_format); const rtm::vector4f translation = acl_impl::sample_translation(context, bone_stream, raw_bone_steam, is_translation_variable, translation_format); const rtm::vector4f scale = has_scale ? acl_impl::sample_scale(context, bone_stream, raw_bone_steam, is_scale_variable, scale_format, default_scale) : default_scale; out_local_pose[bone_index] = rtm::qvv_set(rotation, translation, scale); } } else { for (uint32_t bone_index = 0; bone_index < num_bones; ++bone_index) { context.track_index = bone_index; context.bit_rates = bit_rates[bone_index]; const BoneStreams& bone_stream = bone_streams[bone_index]; const BoneStreams& raw_bone_steam = raw_bone_steams[bone_index]; const rtm::quatf rotation = acl_impl::sample_rotation(context, bone_stream, raw_bone_steam, is_rotation_variable, rotation_format); const rtm::vector4f translation = acl_impl::sample_translation(context, bone_stream, raw_bone_steam, is_translation_variable, translation_format); const rtm::vector4f scale = has_scale ? acl_impl::sample_scale(context, bone_stream, raw_bone_steam, is_scale_variable, scale_format, default_scale) : default_scale; out_local_pose[bone_index] = rtm::qvv_set(rotation, translation, scale); } } } inline void sample_stream(const BoneStreams* bone_streams, const BoneStreams* raw_bone_steams, uint32_t num_bones, float sample_time, uint32_t bone_index, const BoneBitRate* bit_rates, rotation_format8 rotation_format, vector_format8 translation_format, vector_format8 scale_format, rtm::qvvf* out_local_pose) { (void)num_bones; const bool is_rotation_variable = is_rotation_format_variable(rotation_format); const bool is_translation_variable = is_vector_format_variable(translation_format); const bool is_scale_variable = is_vector_format_variable(scale_format); const SegmentContext* segment_context = bone_streams->segment; const rtm::vector4f default_scale = get_default_scale(segment_context->clip->additive_format); const bool has_scale = segment_context->clip->has_scale; // With uniform sample distributions, we do not interpolate. uint32_t sample_key; if (segment_context->distribution == SampleDistribution8::Uniform) sample_key = get_uniform_sample_key(*segment_context, sample_time); else sample_key = 0; // Not used acl_impl::sample_context context; context.track_index = bone_index; context.sample_key = sample_key; context.sample_time = sample_time; context.bit_rates = bit_rates[bone_index]; const BoneStreams& bone_stream = bone_streams[bone_index]; const BoneStreams& raw_bone_stream = raw_bone_steams[bone_index]; rtm::quatf rotation; rtm::vector4f translation; rtm::vector4f scale; if (segment_context->distribution == SampleDistribution8::Uniform) { rotation = acl_impl::sample_rotation(context, bone_stream, raw_bone_stream, is_rotation_variable, rotation_format); translation = acl_impl::sample_translation(context, bone_stream, raw_bone_stream, is_translation_variable, translation_format); scale = has_scale ? acl_impl::sample_scale(context, bone_stream, raw_bone_stream, is_scale_variable, scale_format, default_scale) : default_scale; } else { rotation = acl_impl::sample_rotation(context, bone_stream, raw_bone_stream, is_rotation_variable, rotation_format); translation = acl_impl::sample_translation(context, bone_stream, raw_bone_stream, is_translation_variable, translation_format); scale = has_scale ? acl_impl::sample_scale(context, bone_stream, raw_bone_stream, is_scale_variable, scale_format, default_scale) : default_scale; } out_local_pose[bone_index] = rtm::qvv_set(rotation, translation, scale); } inline void sample_streams_hierarchical(const BoneStreams* bone_streams, const BoneStreams* raw_bone_steams, uint32_t num_bones, float sample_time, uint32_t bone_index, const BoneBitRate* bit_rates, rotation_format8 rotation_format, vector_format8 translation_format, vector_format8 scale_format, rtm::qvvf* out_local_pose) { (void)num_bones; const bool is_rotation_variable = is_rotation_format_variable(rotation_format); const bool is_translation_variable = is_vector_format_variable(translation_format); const bool is_scale_variable = is_vector_format_variable(scale_format); const SegmentContext* segment_context = bone_streams->segment; const rtm::vector4f default_scale = get_default_scale(segment_context->clip->additive_format); const bool has_scale = segment_context->clip->has_scale; // With uniform sample distributions, we do not interpolate. uint32_t sample_key; if (segment_context->distribution == SampleDistribution8::Uniform) sample_key = get_uniform_sample_key(*segment_context, sample_time); else sample_key = 0; // Not used acl_impl::sample_context context; context.sample_key = sample_key; context.sample_time = sample_time; if (segment_context->distribution == SampleDistribution8::Uniform) { uint32_t current_bone_index = bone_index; while (current_bone_index != k_invalid_track_index) { context.track_index = current_bone_index; context.bit_rates = bit_rates[current_bone_index]; const BoneStreams& bone_stream = bone_streams[current_bone_index]; const BoneStreams& raw_bone_stream = raw_bone_steams[current_bone_index]; const rtm::quatf rotation = acl_impl::sample_rotation(context, bone_stream, raw_bone_stream, is_rotation_variable, rotation_format); const rtm::vector4f translation = acl_impl::sample_translation(context, bone_stream, raw_bone_stream, is_translation_variable, translation_format); const rtm::vector4f scale = has_scale ? acl_impl::sample_scale(context, bone_stream, raw_bone_stream, is_scale_variable, scale_format, default_scale) : default_scale; out_local_pose[current_bone_index] = rtm::qvv_set(rotation, translation, scale); current_bone_index = bone_stream.parent_bone_index; } } else { uint32_t current_bone_index = bone_index; while (current_bone_index != k_invalid_track_index) { context.track_index = current_bone_index; context.bit_rates = bit_rates[current_bone_index]; const BoneStreams& bone_stream = bone_streams[current_bone_index]; const BoneStreams& raw_bone_stream = raw_bone_steams[current_bone_index]; const rtm::quatf rotation = acl_impl::sample_rotation(context, bone_stream, raw_bone_stream, is_rotation_variable, rotation_format); const rtm::vector4f translation = acl_impl::sample_translation(context, bone_stream, raw_bone_stream, is_translation_variable, translation_format); const rtm::vector4f scale = has_scale ? acl_impl::sample_scale(context, bone_stream, raw_bone_stream, is_scale_variable, scale_format, default_scale) : default_scale; out_local_pose[current_bone_index] = rtm::qvv_set(rotation, translation, scale); current_bone_index = bone_stream.parent_bone_index; } } } inline void sample_streams(const BoneStreams* bone_streams, uint32_t num_bones, uint32_t sample_index, rtm::qvvf* out_local_pose) { for (uint32_t bone_index = 0; bone_index < num_bones; ++bone_index) { const BoneStreams& bone_stream = bone_streams[bone_index]; const uint32_t rotation_sample_index = !bone_stream.is_rotation_constant ? sample_index : 0; const rtm::quatf rotation = get_rotation_sample(bone_stream, rotation_sample_index); const uint32_t translation_sample_index = !bone_stream.is_translation_constant ? sample_index : 0; const rtm::vector4f translation = get_translation_sample(bone_stream, translation_sample_index); const uint32_t scale_sample_index = !bone_stream.is_scale_constant ? sample_index : 0; const rtm::vector4f scale = get_scale_sample(bone_stream, scale_sample_index); out_local_pose[bone_index] = rtm::qvv_set(rotation, translation, scale); } } } } ACL_IMPL_FILE_PRAGMA_POP