#pragma once //////////////////////////////////////////////////////////////////////////////// // The MIT License (MIT) // // Copyright (c) 2017 Nicholas Frechette & Animation Compression Library contributors // Copyright (c) 2018 Nicholas Frechette & Realtime Math contributors // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. //////////////////////////////////////////////////////////////////////////////// #include "rtm/constants.h" #include "rtm/math.h" #include "rtm/impl/compiler_utils.h" #include "rtm/impl/scalar_common.h" #include #include RTM_IMPL_FILE_PRAGMA_PUSH namespace rtm { ////////////////////////////////////////////////////////////////////////// // Creates a scalar from a floating point value. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE scalarf RTM_SIMD_CALL scalar_set(float xyzw) RTM_NO_EXCEPT { #if defined(RTM_SSE2_INTRINSICS) return scalarf{ _mm_set_ps1(xyzw) }; #else return xyzw; #endif } #if defined(RTM_SSE2_INTRINSICS) ////////////////////////////////////////////////////////////////////////// // Writes a scalar to memory. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE void RTM_SIMD_CALL scalar_store(scalarf_arg0 input, float* output) RTM_NO_EXCEPT { _mm_store_ss(output, input.value); } #endif ////////////////////////////////////////////////////////////////////////// // Writes a scalar to memory. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE void scalar_store(float input, float* output) RTM_NO_EXCEPT { *output = input; } ////////////////////////////////////////////////////////////////////////// // Casts a scalar into a floating point value. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE float RTM_SIMD_CALL scalar_cast(scalarf_arg0 input) RTM_NO_EXCEPT { #if defined(RTM_SSE2_INTRINSICS) return _mm_cvtss_f32(input.value); #else return input; #endif } #if defined(RTM_SSE2_INTRINSICS) ////////////////////////////////////////////////////////////////////////// // Returns the largest integer value not greater than the input (round towards minus infinity). // scalar_floor(1.8) = 1.0 // scalar_floor(-1.8) = -2.0 ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE scalarf RTM_SIMD_CALL scalar_floor(scalarf_arg0 input) RTM_NO_EXCEPT { #if defined(RTM_SSE4_INTRINSICS) return scalarf{ _mm_round_ss(input.value, input.value, 0x9) }; #else // NaN, +- Infinity, and numbers larger or equal to 2^23 remain unchanged // since they have no fractional part. const __m128i abs_mask = _mm_set_epi32(0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL); const __m128 fractional_limit = _mm_set_ps1(8388608.0F); // 2^23 // Build our mask, larger values that have no fractional part, and infinities will be true // Smaller values and NaN will be false __m128 abs_input = _mm_and_ps(input.value, _mm_castsi128_ps(abs_mask)); __m128 is_input_large = _mm_cmpge_ss(abs_input, fractional_limit); // Test if our input is NaN with (value != value), it is only true for NaN __m128 is_nan = _mm_cmpneq_ss(input.value, input.value); // Combine our masks to determine if we should return the original value __m128 use_original_input = _mm_or_ps(is_input_large, is_nan); // Convert to an integer and back. This does banker's rounding by default __m128 integer_part = _mm_cvtepi32_ps(_mm_cvtps_epi32(input.value)); // Test if the returned value is greater than the original. // A negative input will round towards zero and be greater when we need it to be smaller. __m128 is_negative = _mm_cmpgt_ss(integer_part, input.value); // Convert our mask to a float, ~0 yields -1.0 since it is a valid signed integer // Positive values will yield a 0.0 bias __m128 bias = _mm_cvtepi32_ps(_mm_castps_si128(is_negative)); // Add our bias to properly handle negative values integer_part = _mm_add_ss(integer_part, bias); __m128 result = _mm_or_ps(_mm_and_ps(use_original_input, input.value), _mm_andnot_ps(use_original_input, integer_part)); return scalarf{ result }; #endif } #endif ////////////////////////////////////////////////////////////////////////// // Returns the largest integer value not greater than the input (round towards negative infinity). // scalar_floor(1.8) = 1.0 // scalar_floor(-1.8) = -2.0 ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE float scalar_floor(float input) RTM_NO_EXCEPT { #if defined(RTM_SSE2_INTRINSICS) return scalar_cast(scalar_floor(scalar_set(input))); #else return std::floor(input); #endif } #if defined(RTM_SSE2_INTRINSICS) ////////////////////////////////////////////////////////////////////////// // Returns the smallest integer value not less than the input (round towards positive infinity). // scalar_ceil(1.8) = 2.0 // scalar_ceil(-1.8) = -1.0 ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE scalarf RTM_SIMD_CALL scalar_ceil(scalarf_arg0 input) RTM_NO_EXCEPT { #if defined(RTM_SSE4_INTRINSICS) return scalarf{ _mm_round_ss(input.value, input.value, 0xA) }; #else // NaN, +- Infinity, and numbers larger or equal to 2^23 remain unchanged // since they have no fractional part. const __m128i abs_mask = _mm_set_epi32(0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL); const __m128 fractional_limit = _mm_set_ps1(8388608.0F); // 2^23 // Build our mask, larger values that have no fractional part, and infinities will be true // Smaller values and NaN will be false __m128 abs_input = _mm_and_ps(input.value, _mm_castsi128_ps(abs_mask)); __m128 is_input_large = _mm_cmpge_ss(abs_input, fractional_limit); // Test if our input is NaN with (value != value), it is only true for NaN __m128 is_nan = _mm_cmpneq_ss(input.value, input.value); // Combine our masks to determine if we should return the original value __m128 use_original_input = _mm_or_ps(is_input_large, is_nan); // Convert to an integer and back. This does banker's rounding by default __m128 integer_part = _mm_cvtepi32_ps(_mm_cvtps_epi32(input.value)); // Test if the returned value is smaller than the original. // A positive input will round towards zero and be lower when we need it to be greater. __m128 is_positive = _mm_cmplt_ss(integer_part, input.value); // Convert our mask to a float, ~0 yields -1.0 since it is a valid signed integer // Negative values will yield a 0.0 bias __m128 bias = _mm_cvtepi32_ps(_mm_castps_si128(is_positive)); // Subtract our bias to properly handle positive values integer_part = _mm_sub_ss(integer_part, bias); __m128 result = _mm_or_ps(_mm_and_ps(use_original_input, input.value), _mm_andnot_ps(use_original_input, integer_part)); return scalarf{ result }; #endif } #endif ////////////////////////////////////////////////////////////////////////// // Returns the smallest integer value not less than the input (round towards positive infinity). // scalar_ceil(1.8) = 2.0 // scalar_ceil(-1.8) = -1.0 ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE float scalar_ceil(float input) RTM_NO_EXCEPT { #if defined(RTM_SSE2_INTRINSICS) return scalar_cast(scalar_ceil(scalar_set(input))); #else return std::ceil(input); #endif } #if defined(RTM_SSE2_INTRINSICS) ////////////////////////////////////////////////////////////////////////// // Returns the input if it is within the min/max values otherwise the // exceeded boundary is returned. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE scalarf RTM_SIMD_CALL scalar_clamp(scalarf_arg0 input, scalarf_arg1 min, scalarf_arg2 max) RTM_NO_EXCEPT { return scalarf{ _mm_min_ss(_mm_max_ss(input.value, min.value), max.value) }; } #endif ////////////////////////////////////////////////////////////////////////// // Returns the input if it is within the min/max values otherwise the // exceeded boundary is returned. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE float scalar_clamp(float input, float min, float max) RTM_NO_EXCEPT { #if defined(RTM_SSE2_INTRINSICS) return _mm_cvtss_f32(_mm_min_ss(_mm_max_ss(_mm_set_ps1(input), _mm_set_ps1(min)), _mm_set_ps1(max))); #else return std::min(std::max(input, min), max); #endif } #if defined(RTM_SSE2_INTRINSICS) ////////////////////////////////////////////////////////////////////////// // Returns the absolute value of the input. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE scalarf RTM_SIMD_CALL scalar_abs(scalarf_arg0 input) RTM_NO_EXCEPT { const __m128i abs_mask = _mm_set_epi32(0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL); return scalarf{ _mm_and_ps(input.value, _mm_castsi128_ps(abs_mask)) }; } #endif ////////////////////////////////////////////////////////////////////////// // Returns the absolute value of the input. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE float scalar_abs(float input) RTM_NO_EXCEPT { #if defined(RTM_SSE2_INTRINSICS) const __m128i abs_mask = _mm_set_epi32(0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL); return _mm_cvtss_f32(_mm_and_ps(_mm_set_ps1(input), _mm_castsi128_ps(abs_mask))); #else return std::fabs(input); #endif } #if defined(RTM_SSE2_INTRINSICS) ////////////////////////////////////////////////////////////////////////// // Returns the square root of the input. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE scalarf RTM_SIMD_CALL scalar_sqrt(scalarf_arg0 input) RTM_NO_EXCEPT { return scalarf{ _mm_sqrt_ss(input.value) }; } #endif ////////////////////////////////////////////////////////////////////////// // Returns the square root of the input. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE float RTM_SIMD_CALL scalar_sqrt(float input) RTM_NO_EXCEPT { #if defined(RTM_SSE2_INTRINSICS) return _mm_cvtss_f32(_mm_sqrt_ss(_mm_set_ps1(input))); #else return std::sqrt(input); #endif } #if defined(RTM_SSE2_INTRINSICS) ////////////////////////////////////////////////////////////////////////// // Returns the reciprocal square root of the input. ////////////////////////////////////////////////////////////////////////// #if defined(RTM_COMPILER_MSVC) && _MSC_VER >= 1920 && _MSC_VER < 1925 && defined(_M_X64) && !defined(RTM_AVX_INTRINSICS) // HACK!!! Visual Studio 2019 has a code generation bug triggered by the code below, disable optimizations for now // Bug only happens with x64 SSE2, not with AVX nor with x86 // Fixed in 16.5.4, see https://github.com/nfrechette/rtm/issues/35 // TODO: Remove this hack sometime in 2022 or later once the fix is old enough that we no longer have to support the hack #pragma optimize("", off) #endif RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE scalarf RTM_SIMD_CALL scalar_sqrt_reciprocal(scalarf_arg0 input) RTM_NO_EXCEPT { // Perform two passes of Newton-Raphson iteration on the hardware estimate const __m128 half = _mm_set_ss(0.5F); const __m128 input_half = _mm_mul_ss(input.value, half); const __m128 x0 = _mm_rsqrt_ss(input.value); // First iteration __m128 x1 = _mm_mul_ss(x0, x0); x1 = _mm_sub_ss(half, _mm_mul_ss(input_half, x1)); x1 = _mm_add_ss(_mm_mul_ss(x0, x1), x0); // Second iteration __m128 x2 = _mm_mul_ss(x1, x1); x2 = _mm_sub_ss(half, _mm_mul_ss(input_half, x2)); x2 = _mm_add_ss(_mm_mul_ss(x1, x2), x1); return scalarf{ x2 }; } #if defined(RTM_COMPILER_MSVC) && _MSC_VER >= 1920 && _MSC_VER < 1925 && defined(_M_X64) && !defined(RTM_AVX_INTRINSICS) // HACK!!! See comment above #pragma optimize("", on) #endif #endif ////////////////////////////////////////////////////////////////////////// // Returns the reciprocal square root of the input. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE float RTM_SIMD_CALL scalar_sqrt_reciprocal(float input) RTM_NO_EXCEPT { #if defined(RTM_SSE2_INTRINSICS) return scalar_cast(scalar_sqrt_reciprocal(scalar_set(input))); #else return 1.0F / scalar_sqrt(input); #endif } #if defined(RTM_SSE2_INTRINSICS) ////////////////////////////////////////////////////////////////////////// // Returns the reciprocal of the input. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE scalarf RTM_SIMD_CALL scalar_reciprocal(scalarf_arg0 input) RTM_NO_EXCEPT { return scalarf{ _mm_div_ss(_mm_set_ps1(1.0F), input.value) }; } #endif ////////////////////////////////////////////////////////////////////////// // Returns the reciprocal of the input. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE float RTM_SIMD_CALL scalar_reciprocal(float input) RTM_NO_EXCEPT { #if defined(RTM_SSE2_INTRINSICS) return scalar_cast(scalar_reciprocal(scalar_set(input))); #else return 1.0f / input; #endif } #if defined(RTM_SSE2_INTRINSICS) ////////////////////////////////////////////////////////////////////////// // Returns the addition of the two scalar inputs. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE scalarf RTM_SIMD_CALL scalar_add(scalarf_arg0 lhs, scalarf_arg1 rhs) RTM_NO_EXCEPT { return scalarf{ _mm_add_ss(lhs.value, rhs.value) }; } #endif ////////////////////////////////////////////////////////////////////////// // Returns the addition of the two scalar inputs. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE constexpr float scalar_add(float lhs, float rhs) RTM_NO_EXCEPT { return lhs + rhs; } #if defined(RTM_SSE2_INTRINSICS) ////////////////////////////////////////////////////////////////////////// // Returns the subtraction of the two scalar inputs. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE scalarf RTM_SIMD_CALL scalar_sub(scalarf_arg0 lhs, scalarf_arg1 rhs) RTM_NO_EXCEPT { return scalarf{ _mm_sub_ss(lhs.value, rhs.value) }; } #endif ////////////////////////////////////////////////////////////////////////// // Returns the subtraction of the two scalar inputs. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE constexpr float scalar_sub(float lhs, float rhs) RTM_NO_EXCEPT { return lhs - rhs; } #if defined(RTM_SSE2_INTRINSICS) ////////////////////////////////////////////////////////////////////////// // Returns the multiplication of the two scalar inputs. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE scalarf RTM_SIMD_CALL scalar_mul(scalarf_arg0 lhs, scalarf_arg1 rhs) RTM_NO_EXCEPT { return scalarf{ _mm_mul_ss(lhs.value, rhs.value) }; } #endif ////////////////////////////////////////////////////////////////////////// // Returns the multiplication of the two scalar inputs. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE constexpr float scalar_mul(float lhs, float rhs) RTM_NO_EXCEPT { return lhs * rhs; } #if defined(RTM_SSE2_INTRINSICS) ////////////////////////////////////////////////////////////////////////// // Returns the division of the two scalar inputs. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE scalarf RTM_SIMD_CALL scalar_div(scalarf_arg0 lhs, scalarf_arg1 rhs) RTM_NO_EXCEPT { return scalarf{ _mm_div_ss(lhs.value, rhs.value) }; } #endif ////////////////////////////////////////////////////////////////////////// // Returns the division of the two scalar inputs. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE constexpr float scalar_div(float lhs, float rhs) RTM_NO_EXCEPT { return lhs / rhs; } #if defined(RTM_SSE2_INTRINSICS) ////////////////////////////////////////////////////////////////////////// // Returns the multiplication/addition of the three inputs: s2 + (s0 * s1) ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE scalarf RTM_SIMD_CALL scalar_mul_add(scalarf_arg0 s0, scalarf_arg1 s1, scalarf_arg2 s2) RTM_NO_EXCEPT { return scalarf{ _mm_add_ss(_mm_mul_ss(s0.value, s1.value), s2.value) }; } #endif ////////////////////////////////////////////////////////////////////////// // Returns the multiplication/addition of the three inputs: s2 + (s0 * s1) ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE float scalar_mul_add(float s0, float s1, float s2) RTM_NO_EXCEPT { #if defined(RTM_NEON_INTRINSICS) return std::fma(s0, s1, s2); #else return (s0 * s1) + s2; #endif } #if defined(RTM_SSE2_INTRINSICS) ////////////////////////////////////////////////////////////////////////// // Returns the negative multiplication/subtraction of the three inputs: -((s0 * s1) - s2) // This is mathematically equivalent to: s2 - (s0 * s1) ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE scalarf RTM_SIMD_CALL scalar_neg_mul_sub(scalarf_arg0 s0, scalarf_arg1 s1, scalarf_arg2 s2) RTM_NO_EXCEPT { return scalarf{ _mm_sub_ss(s2.value, _mm_mul_ss(s0.value, s1.value)) }; } #endif ////////////////////////////////////////////////////////////////////////// // Returns the negative multiplication/subtraction of the three inputs: -((s0 * s1) - s2) // This is mathematically equivalent to: s2 - (s0 * s1) ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE constexpr float scalar_neg_mul_sub(float s0, float s1, float s2) RTM_NO_EXCEPT { return s2 - (s0 * s1); } #if defined(RTM_SSE2_INTRINSICS) ////////////////////////////////////////////////////////////////////////// // Returns the linear interpolation of the two inputs at the specified alpha. // The formula used is: ((1.0 - alpha) * start) + (alpha * end). // Interpolation is stable and will return 'start' when alpha is 0.0 and 'end' when it is 1.0. // This is the same instruction count when FMA is present but it might be slightly slower // due to the extra multiplication compared to: start + (alpha * (end - start)). ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE scalarf RTM_SIMD_CALL scalar_lerp(scalarf_arg0 start, scalarf_arg1 end, scalarf_arg2 alpha) RTM_NO_EXCEPT { // ((1.0 - alpha) * start) + (alpha * end) == (start - alpha * start) + (alpha * end) return scalar_mul_add(end, alpha, scalar_neg_mul_sub(start, alpha, start)); } #endif ////////////////////////////////////////////////////////////////////////// // Returns the linear interpolation of the two inputs at the specified alpha. // The formula used is: ((1.0 - alpha) * start) + (alpha * end). // Interpolation is stable and will return 'start' when alpha is 0.0 and 'end' when it is 1.0. // This is the same instruction count when FMA is present but it might be slightly slower // due to the extra multiplication compared to: start + (alpha * (end - start)). ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE float scalar_lerp(float start, float end, float alpha) RTM_NO_EXCEPT { // ((1.0 - alpha) * start) + (alpha * end) == (start - alpha * start) + (alpha * end) return scalar_mul_add(end, alpha, scalar_neg_mul_sub(start, alpha, start)); } #if defined(RTM_SSE2_INTRINSICS) ////////////////////////////////////////////////////////////////////////// // Returns the smallest of the two inputs. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE scalarf RTM_SIMD_CALL scalar_min(scalarf_arg0 lhs, scalarf_arg1 rhs) RTM_NO_EXCEPT { return scalarf{ _mm_min_ss(lhs.value, rhs.value) }; } #endif ////////////////////////////////////////////////////////////////////////// // Returns the smallest of the two inputs. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE float scalar_min(float left, float right) RTM_NO_EXCEPT { #if defined(RTM_SSE2_INTRINSICS) return _mm_cvtss_f32(_mm_min_ss(_mm_set_ps1(left), _mm_set_ps1(right))); #else return std::min(left, right); #endif } #if defined(RTM_SSE2_INTRINSICS) ////////////////////////////////////////////////////////////////////////// // Returns the largest of the two inputs. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE scalarf RTM_SIMD_CALL scalar_max(scalarf_arg0 lhs, scalarf_arg1 rhs) RTM_NO_EXCEPT { return scalarf{ _mm_max_ss(lhs.value, rhs.value) }; } #endif ////////////////////////////////////////////////////////////////////////// // Returns the largest of the two inputs. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE float scalar_max(float left, float right) RTM_NO_EXCEPT { #if defined(RTM_SSE2_INTRINSICS) return _mm_cvtss_f32(_mm_max_ss(_mm_set_ps1(left), _mm_set_ps1(right))); #else return std::max(left, right); #endif } #if defined(RTM_SSE2_INTRINSICS) ////////////////////////////////////////////////////////////////////////// // Returns true if both inputs are equal, false otherwise. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE bool RTM_SIMD_CALL scalar_equal(scalarf_arg0 lhs, scalarf_arg1 rhs) RTM_NO_EXCEPT { return _mm_comieq_ss(lhs.value, rhs.value) != 0; } #endif ////////////////////////////////////////////////////////////////////////// // Returns true if both inputs are equal, false otherwise. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE constexpr bool scalar_equal(float lhs, float rhs) RTM_NO_EXCEPT { return lhs == rhs; } #if defined(RTM_SSE2_INTRINSICS) ////////////////////////////////////////////////////////////////////////// // Returns true if lhs < rhs, false otherwise. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE bool RTM_SIMD_CALL scalar_lower_than(scalarf_arg0 lhs, scalarf_arg1 rhs) RTM_NO_EXCEPT { return _mm_comilt_ss(lhs.value, rhs.value) != 0; } #endif ////////////////////////////////////////////////////////////////////////// // Returns true if lhs < rhs, false otherwise. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE constexpr bool scalar_lower_than(float lhs, float rhs) RTM_NO_EXCEPT { return lhs < rhs; } #if defined(RTM_SSE2_INTRINSICS) ////////////////////////////////////////////////////////////////////////// // Returns true if lhs <= rhs, false otherwise. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE bool RTM_SIMD_CALL scalar_lower_equal(scalarf_arg0 lhs, scalarf_arg1 rhs) RTM_NO_EXCEPT { return _mm_comile_ss(lhs.value, rhs.value) != 0; } #endif ////////////////////////////////////////////////////////////////////////// // Returns true if lhs <= rhs, false otherwise. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE constexpr bool scalar_lower_equal(float lhs, float rhs) RTM_NO_EXCEPT { return lhs <= rhs; } #if defined(RTM_SSE2_INTRINSICS) ////////////////////////////////////////////////////////////////////////// // Returns true if lhs > rhs, false otherwise. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE bool RTM_SIMD_CALL scalar_greater_than(scalarf_arg0 lhs, scalarf_arg1 rhs) RTM_NO_EXCEPT { return _mm_comigt_ss(lhs.value, rhs.value) != 0; } #endif ////////////////////////////////////////////////////////////////////////// // Returns true if lhs > rhs, false otherwise. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE constexpr bool scalar_greater_than(float lhs, float rhs) RTM_NO_EXCEPT { return lhs > rhs; } #if defined(RTM_SSE2_INTRINSICS) ////////////////////////////////////////////////////////////////////////// // Returns true if lhs >= rhs, false otherwise. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE bool RTM_SIMD_CALL scalar_greater_equal(scalarf_arg0 lhs, scalarf_arg1 rhs) RTM_NO_EXCEPT { return _mm_comige_ss(lhs.value, rhs.value) != 0; } #endif ////////////////////////////////////////////////////////////////////////// // Returns true if lhs >= rhs, false otherwise. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE constexpr bool scalar_greater_equal(float lhs, float rhs) RTM_NO_EXCEPT { return lhs >= rhs; } #if defined(RTM_SSE2_INTRINSICS) ////////////////////////////////////////////////////////////////////////// // Returns true if both inputs are nearly equal, otherwise false: abs(lhs - rhs) <= threshold ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE bool RTM_SIMD_CALL scalar_near_equal(scalarf_arg0 lhs, scalarf_arg1 rhs, scalarf_arg2 threshold) RTM_NO_EXCEPT { return scalar_lower_equal(scalar_abs(scalar_sub(lhs, rhs)), threshold); } #endif ////////////////////////////////////////////////////////////////////////// // Returns true if both inputs are nearly equal, otherwise false: abs(lhs - rhs) <= threshold ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE bool scalar_near_equal(float lhs, float rhs, float threshold) RTM_NO_EXCEPT { return scalar_abs(lhs - rhs) <= threshold; } #if defined(RTM_SSE2_INTRINSICS) ////////////////////////////////////////////////////////////////////////// // Returns true if the input is finite (not NaN or Inf), false otherwise. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE bool RTM_SIMD_CALL scalar_is_finite(scalarf_arg0 input) RTM_NO_EXCEPT { const __m128i abs_mask = _mm_set_epi32(0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL); __m128 abs_input = _mm_and_ps(input.value, _mm_castsi128_ps(abs_mask)); const __m128 infinity = _mm_set_ps1(std::numeric_limits::infinity()); __m128 is_infinity = _mm_cmpeq_ss(abs_input, infinity); __m128 is_nan = _mm_cmpneq_ss(input.value, input.value); __m128 is_not_finite = _mm_or_ps(is_infinity, is_nan); return (_mm_movemask_ps(is_not_finite) & 0x1) == 0; } #endif ////////////////////////////////////////////////////////////////////////// // Returns true if the input is finite (not NaN or Inf), false otherwise. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE bool scalar_is_finite(float input) RTM_NO_EXCEPT { return std::isfinite(input); } #if defined(RTM_SSE2_INTRINSICS) ////////////////////////////////////////////////////////////////////////// // Returns the rounded input using a symmetric algorithm. // scalar_symmetric_round(1.5) = 2.0 // scalar_symmetric_round(1.2) = 1.0 // scalar_symmetric_round(-1.5) = -2.0 // scalar_symmetric_round(-1.2) = -1.0 // Note: This function relies on the default floating point rounding mode (banker's rounding). ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK inline scalarf RTM_SIMD_CALL scalar_round_symmetric(scalarf_arg0 input) RTM_NO_EXCEPT { // NaN, +- Infinity, and numbers larger or equal to 2^23 remain unchanged // since they have no fractional part. #if defined(RTM_SSE4_INTRINSICS) __m128 is_positive = _mm_cmpge_ss(input.value, _mm_setzero_ps()); const __m128 sign_mask = _mm_set_ps(-0.0F, -0.0F, -0.0F, -0.0F); __m128 sign = _mm_andnot_ps(is_positive, sign_mask); // For positive values, we add a bias of 0.5. // For negative values, we add a bias of -0.5. __m128 bias = _mm_or_ps(sign, _mm_set_ps1(0.5F)); __m128 biased_input = _mm_add_ss(input.value, bias); __m128 floored = _mm_floor_ss(biased_input, biased_input); __m128 ceiled = _mm_ceil_ss(biased_input, biased_input); #if defined(RTM_AVX_INTRINSICS) __m128 result = _mm_blendv_ps(ceiled, floored, is_positive); #else __m128 result = _mm_or_ps(_mm_and_ps(is_positive, floored), _mm_andnot_ps(is_positive, ceiled)); #endif return scalarf{ result }; #else const __m128i abs_mask = _mm_set_epi32(0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL); const __m128 fractional_limit = _mm_set_ps1(8388608.0F); // 2^23 // Build our mask, larger values that have no fractional part, and infinities will be true // Smaller values and NaN will be false __m128 abs_input = _mm_and_ps(input.value, _mm_castsi128_ps(abs_mask)); __m128 is_input_large = _mm_cmpge_ss(abs_input, fractional_limit); // Test if our input is NaN with (value != value), it is only true for NaN __m128 is_nan = _mm_cmpneq_ss(input.value, input.value); // Combine our masks to determine if we should return the original value __m128 use_original_input = _mm_or_ps(is_input_large, is_nan); const __m128 sign_mask = _mm_set_ps(-0.0F, -0.0F, -0.0F, -0.0F); __m128 sign = _mm_and_ps(input.value, sign_mask); // For positive values, we add a bias of 0.5. // For negative values, we add a bias of -0.5. __m128 bias = _mm_or_ps(sign, _mm_set_ps1(0.5F)); __m128 biased_input = _mm_add_ss(input.value, bias); // Convert to an integer with truncation and back, this rounds towards zero. __m128 integer_part = _mm_cvtepi32_ps(_mm_cvttps_epi32(biased_input)); __m128 result = _mm_or_ps(_mm_and_ps(use_original_input, input.value), _mm_andnot_ps(use_original_input, integer_part)); return scalarf{ result }; #endif } #endif ////////////////////////////////////////////////////////////////////////// // Returns the rounded input using a symmetric algorithm. // scalar_round_symmetric(1.5) = 2.0 // scalar_round_symmetric(1.2) = 1.0 // scalar_round_symmetric(-1.5) = -2.0 // scalar_round_symmetric(-1.2) = -1.0 ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK inline float scalar_round_symmetric(float input) RTM_NO_EXCEPT { #if defined(RTM_SSE2_INTRINSICS) return scalar_cast(scalar_round_symmetric(scalar_set(input))); #elif defined(RTM_NEON64_INTRINSICS) // arm64 has floor/ceil instructions return input >= 0.0F ? scalar_floor(input + 0.5F) : scalar_ceil(input - 0.5F); #else // NaN, +- Infinity, and numbers larger or equal to 2^23 remain unchanged // since they have no fractional part. const float fractional_limit = 8388608.0F; // 2^23 // Build our mask, larger values that have no fractional part, and infinities will be true // Smaller values and NaN will be false float abs_input = scalar_abs(input); bool is_input_large = abs_input >= fractional_limit; // Test if our input is NaN with (value != value), it is only true for NaN bool is_nan = input != input; // Combine our masks to determine if we should return the original value bool use_original_input = is_input_large | is_nan; // For positive values, we add a bias of 0.5. // For negative values, we add a bias of -0.5. float bias = input >= 0.0F ? 0.5F : -0.5F; float biased_input = input + bias; // Convert to an integer with truncation and back, this rounds towards zero. float integer_part = static_cast(static_cast(biased_input)); return use_original_input ? input : integer_part; #endif } #if defined(RTM_SSE2_INTRINSICS) ////////////////////////////////////////////////////////////////////////// // Returns the rounded input using banker's rounding (half to even). // scalar_round_bankers(2.5) = 2.0 // scalar_round_bankers(1.5) = 2.0 // scalar_round_bankers(1.2) = 1.0 // scalar_round_bankers(-2.5) = -2.0 // scalar_round_bankers(-1.5) = -2.0 // scalar_round_bankers(-1.2) = -1.0 // Note: This function relies on the default floating point rounding mode (banker's rounding). ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE scalarf RTM_SIMD_CALL scalar_round_bankers(scalarf_arg0 input) RTM_NO_EXCEPT { #if defined(RTM_SSE4_INTRINSICS) return scalarf{ _mm_round_ss(input.value, input.value, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC) }; #else const __m128 sign_mask = _mm_set_ps(-0.0F, -0.0F, -0.0F, -0.0F); __m128 sign = _mm_and_ps(input.value, sign_mask); // We add the largest integer that a 32 bit floating point number can represent and subtract it afterwards. // This relies on the fact that if we had a fractional part, the new value cannot be represented accurately // and IEEE 754 will perform rounding for us. The default rounding mode is Banker's rounding. // This has the effect of removing the fractional part while simultaneously rounding. // Use the same sign as the input value to make sure we handle positive and negative values. const __m128 fractional_limit = _mm_set_ps1(8388608.0F); // 2^23 __m128 truncating_offset = _mm_or_ps(sign, fractional_limit); __m128 integer_part = _mm_sub_ss(_mm_add_ss(input.value, truncating_offset), truncating_offset); // If our input was so large that it had no fractional part, return it unchanged // Otherwise return our integer part const __m128i abs_mask = _mm_set_epi32(0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL); __m128 abs_input = _mm_and_ps(input.value, _mm_castsi128_ps(abs_mask)); __m128 is_input_large = _mm_cmpge_ss(abs_input, fractional_limit); __m128 result = _mm_or_ps(_mm_and_ps(is_input_large, input.value), _mm_andnot_ps(is_input_large, integer_part)); return scalarf{ result }; #endif } #endif ////////////////////////////////////////////////////////////////////////// // Returns the rounded input using banker's rounding (half to even). // scalar_round_bankers(2.5) = 2.0 // scalar_round_bankers(1.5) = 2.0 // scalar_round_bankers(1.2) = 1.0 // scalar_round_bankers(-2.5) = -2.0 // scalar_round_bankers(-1.5) = -2.0 // scalar_round_bankers(-1.2) = -1.0 ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE float scalar_round_bankers(float input) RTM_NO_EXCEPT { #if defined(RTM_SSE2_INTRINSICS) return scalar_cast(scalar_round_bankers(scalar_set(input))); #elif defined(RTM_NEON64_INTRINSICS) && defined(RTM_IMPL_VRNDNS_SUPPORTED) return vrndns_f32(input); #else if (!scalar_is_finite(input)) return input; int32_t whole = static_cast(input); float whole_f = static_cast(whole); float remainder = scalar_abs(input - whole_f); if (remainder < 0.5F) return whole_f; if (remainder > 0.5F) return input >= 0.0F ? (whole_f + 1.0F) : (whole_f - 1.0F); if ((whole % 2) == 0) return whole_f; else return input >= 0.0F ? (whole_f + 1.0F) : (whole_f - 1.0F); #endif } ////////////////////////////////////////////////////////////////////////// // Returns the fractional part of the input. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE float scalar_fraction(float value) RTM_NO_EXCEPT { return value - scalar_floor(value); } ////////////////////////////////////////////////////////////////////////// // Safely casts an integral input into a float64 output. ////////////////////////////////////////////////////////////////////////// template RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE float scalar_safe_to_float(SrcIntegralType input) RTM_NO_EXCEPT { float input_f = float(input); RTM_ASSERT(SrcIntegralType(input_f) == input, "Conversion to float would result in truncation"); return input_f; } ////////////////////////////////////////////////////////////////////////// // Trigonometric functions ////////////////////////////////////////////////////////////////////////// #if defined(RTM_SSE2_INTRINSICS) ////////////////////////////////////////////////////////////////////////// // Returns the sine of the input angle. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK inline scalarf RTM_SIMD_CALL scalar_sin(scalarf_arg0 angle) RTM_NO_EXCEPT { // Use a degree 11 minimax approximation polynomial // See: GPGPU Programming for Games and Science (David H. Eberly) // Remap our input in the [-pi, pi] range __m128 quotient = _mm_mul_ss(angle.value, _mm_set_ps1(rtm::constants::one_div_two_pi())); quotient = scalar_round_bankers(scalarf{ quotient }).value; quotient = _mm_mul_ss(quotient, _mm_set_ps1(rtm::constants::two_pi())); __m128 x = _mm_sub_ss(angle.value, quotient); // Remap our input in the [-pi/2, pi/2] range const __m128 sign_mask = _mm_set_ps(-0.0F, -0.0F, -0.0F, -0.0F); __m128 sign = _mm_and_ps(x, sign_mask); __m128 reference = _mm_or_ps(sign, _mm_set_ps1(rtm::constants::pi())); const __m128 reflection = _mm_sub_ss(reference, x); const __m128i abs_mask = _mm_set_epi32(0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL); const __m128 x_abs = _mm_and_ps(x, _mm_castsi128_ps(abs_mask)); __m128 is_less_equal_than_half_pi = _mm_cmple_ss(x_abs, _mm_set_ps1(rtm::constants::half_pi())); #if defined(RTM_AVX_INTRINSICS) x = _mm_blendv_ps(reflection, x, is_less_equal_than_half_pi); #else x = _mm_or_ps(_mm_andnot_ps(is_less_equal_than_half_pi, reflection), _mm_and_ps(x, is_less_equal_than_half_pi)); #endif // Calculate our value const float x2 = _mm_cvtss_f32(_mm_mul_ss(x, x)); float result = (x2 * -2.3828544692960918e-8F) + 2.7521557770526783e-6F; result = (result * x2) - 1.9840782426250314e-4F; result = (result * x2) + 8.3333303183525942e-3F; result = (result * x2) - 1.6666666601721269e-1F; result = (result * x2) + 1.0F; result = result * _mm_cvtss_f32(x); return scalar_set(result); } #endif ////////////////////////////////////////////////////////////////////////// // Returns the sine of the input angle. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK inline float RTM_SIMD_CALL scalar_sin(float angle) RTM_NO_EXCEPT { #if defined(RTM_SSE2_INTRINSICS) return scalar_cast(scalar_sin(scalar_set(angle))); #elif defined(RTM_NEON_INTRINSICS) return std::sin(angle); #else // Use a degree 11 minimax approximation polynomial // See: GPGPU Programming for Games and Science (David H. Eberly) // Remap our input in the [-pi, pi] range float quotient = angle * rtm::constants::one_div_two_pi(); quotient = scalar_round_bankers(quotient); quotient = quotient * rtm::constants::two_pi(); float x = angle - quotient; // Remap our input in the [-pi/2, pi/2] range const float reference = std::copysign(rtm::constants::pi(), x); const float reflection = reference - x; const float x_abs = scalar_abs(x); x = x_abs <= rtm::constants::half_pi() ? x : reflection; // Calculate our value const float x2 = x * x; float result = (x2 * -2.3828544692960918e-8F) + 2.7521557770526783e-6F; result = (result * x2) - 1.9840782426250314e-4F; result = (result * x2) + 8.3333303183525942e-3F; result = (result * x2) - 1.6666666601721269e-1F; result = (result * x2) + 1.0F; result = result * x; return result; #endif } #if defined(RTM_SSE2_INTRINSICS) ////////////////////////////////////////////////////////////////////////// // Returns the cosine of the input angle. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK inline scalarf RTM_SIMD_CALL scalar_cos(scalarf_arg0 angle) RTM_NO_EXCEPT { // Use a degree 10 minimax approximation polynomial // See: GPGPU Programming for Games and Science (David H. Eberly) // Remap our input in the [-pi, pi] range __m128 quotient = _mm_mul_ss(angle.value, _mm_set_ps1(rtm::constants::one_div_two_pi())); quotient = scalar_round_bankers(scalarf{ quotient }).value; quotient = _mm_mul_ss(quotient, _mm_set_ps1(rtm::constants::two_pi())); __m128 x = _mm_sub_ss(angle.value, quotient); // Remap our input in the [-pi/2, pi/2] range const __m128 sign_mask = _mm_set_ps(-0.0F, -0.0F, -0.0F, -0.0F); __m128 x_sign = _mm_and_ps(x, sign_mask); __m128 reference = _mm_or_ps(x_sign, _mm_set_ps1(rtm::constants::pi())); const __m128 reflection = _mm_sub_ss(reference, x); const __m128i abs_mask = _mm_set_epi32(0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL); __m128 x_abs = _mm_and_ps(x, _mm_castsi128_ps(abs_mask)); __m128 is_less_equal_than_half_pi = _mm_cmple_ss(x_abs, _mm_set_ps1(rtm::constants::half_pi())); #if defined(RTM_AVX_INTRINSICS) x = _mm_blendv_ps(reflection, x, is_less_equal_than_half_pi); #else x = _mm_or_ps(_mm_andnot_ps(is_less_equal_than_half_pi, reflection), _mm_and_ps(x, is_less_equal_than_half_pi)); #endif // Calculate our value const float x2 = _mm_cvtss_f32(_mm_mul_ss(x, x)); float result = (x2 * -2.6051615464872668e-7F) + 2.4760495088926859e-5F; result = (result * x2) - 1.3888377661039897e-3F; result = (result * x2) + 4.1666638865338612e-2F; result = (result * x2) - 4.9999999508695869e-1F; result = (result * x2) + 1.0F; // Remap into [-pi, pi] __m128 result_v = _mm_set_ps1(result); __m128 cosine = _mm_or_ps(result_v, _mm_andnot_ps(is_less_equal_than_half_pi, sign_mask)); return scalarf{ cosine }; } #endif ////////////////////////////////////////////////////////////////////////// // Returns the cosine of the input angle. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK inline float RTM_SIMD_CALL scalar_cos(float angle) RTM_NO_EXCEPT { #if defined(RTM_SSE2_INTRINSICS) return scalar_cast(scalar_cos(scalar_set(angle))); #elif defined(RTM_NEON_INTRINSICS) return std::cos(angle); #else // Use a degree 10 minimax approximation polynomial // See: GPGPU Programming for Games and Science (David H. Eberly) // Remap our input in the [-pi, pi] range float quotient = angle * rtm::constants::one_div_two_pi(); quotient = scalar_round_bankers(quotient); quotient = quotient * rtm::constants::two_pi(); float x = angle - quotient; // Remap our input in the [-pi/2, pi/2] range const float reference = std::copysign(rtm::constants::pi(), x); const float reflection = reference - x; const float x_abs = scalar_abs(x); x = x_abs <= rtm::constants::half_pi() ? x : reflection; // Calculate our value const float x2 = x * x; float result = (x2 * -2.6051615464872668e-7F) + 2.4760495088926859e-5F; result = (result * x2) - 1.3888377661039897e-3F; result = (result * x2) + 4.1666638865338612e-2F; result = (result * x2) - 4.9999999508695869e-1F; result = (result * x2) + 1.0F; // Remap into [-pi, pi] if (x_abs <= rtm::constants::half_pi()) return result; else return -result; #endif } #if defined(RTM_SSE2_INTRINSICS) ////////////////////////////////////////////////////////////////////////// // Returns both sine and cosine of the input angle. // The result's [x] component contains sin(angle). // The result's [y] component contains cos(angle). // [zw] are undefined. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK inline vector4f RTM_SIMD_CALL scalar_sincos(scalarf angle) RTM_NO_EXCEPT { scalarf sin_ = scalar_sin(angle); scalarf cos_ = scalar_cos(angle); return _mm_unpacklo_ps(sin_.value, cos_.value); } #endif ////////////////////////////////////////////////////////////////////////// // Returns both sine and cosine of the input angle. // The result's [x] component contains sin(angle). // The result's [y] component contains cos(angle). // [zw] are undefined. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK inline vector4f RTM_SIMD_CALL scalar_sincos(float angle) RTM_NO_EXCEPT { scalarf angle_ = scalar_set(angle); scalarf sin_ = scalar_sin(angle_); scalarf cos_ = scalar_cos(angle_); #if defined(RTM_SSE2_INTRINSICS) return _mm_unpacklo_ps(sin_.value, cos_.value); #elif defined(RTM_NEON_INTRINSICS) float32x2_t xy = vcreate_f32(((uint64_t)*(const uint32_t*)&sin_) | ((uint64_t)(*(const uint32_t*)&cos_) << 32)); return vcombine_f32(xy, xy); #else return vector4f{ sin_, cos_, sin_, cos_ }; #endif } ////////////////////////////////////////////////////////////////////////// // Returns both sine and cosine of the input angle. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK inline void scalar_sincos(float angle, float& out_sin, float& out_cos) RTM_NO_EXCEPT { out_sin = scalar_sin(angle); out_cos = scalar_cos(angle); } #if defined(RTM_SSE2_INTRINSICS) ////////////////////////////////////////////////////////////////////////// // Returns the arc-sine of the input. // Input value must be in the range [-1.0, 1.0]. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK inline scalarf RTM_SIMD_CALL scalar_asin(scalarf_arg0 value) RTM_NO_EXCEPT { // Use a degree 7 minimax approximation polynomial // See: GPGPU Programming for Games and Science (David H. Eberly) // We first calculate our scale: sqrt(1.0 - abs(value)) const __m128i abs_mask = _mm_set_epi32(0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL); __m128 abs_value = _mm_and_ps(value.value, _mm_castsi128_ps(abs_mask)); // Calculate our value const float x = _mm_cvtss_f32(abs_value); float result = (x * -1.2690614339589956e-3F) + 6.7072304676685235e-3F; result = (result * x) - 1.7162031184398074e-2F; result = (result * x) + 3.0961594977611639e-2F; result = (result * x) - 5.0207843052845647e-2F; result = (result * x) + 8.8986946573346160e-2F; result = (result * x) - 2.1459960076929829e-1F; result = (result * x) + 1.5707963267948966F; // Scale our result const __m128 scale = _mm_sqrt_ss(_mm_sub_ss(_mm_set_ps1(1.0F), abs_value)); result = result * _mm_cvtss_f32(scale); // Handle negative values through reflection if (_mm_cvtss_f32(value.value) < 0.0F) result = rtm::constants::pi() - result; // Shift our final result const float offset = rtm::constants::half_pi(); result = offset - result; return scalarf{ _mm_set_ps1(result) }; } #endif ////////////////////////////////////////////////////////////////////////// // Returns the arc-sine of the input. // Input value must be in the range [-1.0, 1.0]. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK inline float scalar_asin(float value) RTM_NO_EXCEPT { #if defined(RTM_SSE2_INTRINSICS) return scalar_cast(scalar_asin(scalar_set(value))); #elif defined(RTM_NEON_INTRINSICS) return std::asin(value); #else // Use a degree 7 minimax approximation polynomial // See: GPGPU Programming for Games and Science (David H. Eberly) // We first calculate our scale: sqrt(1.0 - abs(value)) const float abs_value = scalar_abs(value); // Calculate our value float result = (abs_value * -1.2690614339589956e-3F) + 6.7072304676685235e-3F; result = (result * abs_value) - 1.7162031184398074e-2F; result = (result * abs_value) + 3.0961594977611639e-2F; result = (result * abs_value) - 5.0207843052845647e-2F; result = (result * abs_value) + 8.8986946573346160e-2F; result = (result * abs_value) - 2.1459960076929829e-1F; result = (result * abs_value) + 1.5707963267948966F; // Scale our result const float scale = scalar_sqrt(1.0F - abs_value); result = result * scale; // Handle negative values through reflection if (value < 0.0F) result = rtm::constants::pi() - result; // Shift our final result const float offset = rtm::constants::half_pi(); result = offset - result; return result; #endif } #if defined(RTM_SSE2_INTRINSICS) ////////////////////////////////////////////////////////////////////////// // Returns the arc-cosine of the input. // Input value must be in the range [-1.0, 1.0]. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK inline scalarf RTM_SIMD_CALL scalar_acos(scalarf_arg0 value) RTM_NO_EXCEPT { // Use the identity: acos(value) + asin(value) = PI/2 // This ends up being: acos(value) = PI/2 - asin(value) // Since asin(value) = PI/2 - sqrt(1.0 - polynomial(value)) // Our end result is acos(value) = sqrt(1.0 - polynomial(value)) // This means we can re-use the same polynomial as asin() // See: GPGPU Programming for Games and Science (David H. Eberly) // We first calculate our scale: sqrt(1.0 - abs(value)) const __m128i abs_mask = _mm_set_epi32(0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL); __m128 abs_value = _mm_and_ps(value.value, _mm_castsi128_ps(abs_mask)); // Calculate our value const float x = _mm_cvtss_f32(abs_value); float result = (x * -1.2690614339589956e-3F) + 6.7072304676685235e-3F; result = (result * x) - 1.7162031184398074e-2F; result = (result * x) + 3.0961594977611639e-2F; result = (result * x) - 5.0207843052845647e-2F; result = (result * x) + 8.8986946573346160e-2F; result = (result * x) - 2.1459960076929829e-1F; result = (result * x) + 1.5707963267948966F; // Scale our result const __m128 scale = _mm_sqrt_ss(_mm_sub_ss(_mm_set_ps1(1.0F), abs_value)); result = result * _mm_cvtss_f32(scale); // Handle negative values through reflection if (_mm_cvtss_f32(value.value) < 0.0F) result = rtm::constants::pi() - result; return scalarf{ _mm_set_ps1(result) }; } #endif ////////////////////////////////////////////////////////////////////////// // Returns the arc-cosine of the input. // Input value must be in the range [-1.0, 1.0]. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK inline float scalar_acos(float value) RTM_NO_EXCEPT { #if defined(RTM_SSE2_INTRINSICS) return scalar_cast(scalar_acos(scalar_set(value))); #elif defined(RTM_NEON_INTRINSICS) return std::acos(value); #else // Use the identity: acos(value) + asin(value) = PI/2 // This ends up being: acos(value) = PI/2 - asin(value) // Since asin(value) = PI/2 - sqrt(1.0 - polynomial(value)) // Our end result is acos(value) = sqrt(1.0 - polynomial(value)) // This means we can re-use the same polynomial as asin() // See: GPGPU Programming for Games and Science (David H. Eberly) // We first calculate our scale: sqrt(1.0 - abs(value)) const float abs_value = scalar_abs(value); // Calculate our value float result = (abs_value * -1.2690614339589956e-3F) + 6.7072304676685235e-3F; result = (result * abs_value) - 1.7162031184398074e-2F; result = (result * abs_value) + 3.0961594977611639e-2F; result = (result * abs_value) - 5.0207843052845647e-2F; result = (result * abs_value) + 8.8986946573346160e-2F; result = (result * abs_value) - 2.1459960076929829e-1F; result = (result * abs_value) + 1.5707963267948966F; // Scale our result const float scale = scalar_sqrt(1.0F - abs_value); result = result * scale; // Handle negative values through reflection if (value < 0.0F) result = rtm::constants::pi() - result; return result; #endif } #if defined(RTM_SSE2_INTRINSICS) ////////////////////////////////////////////////////////////////////////// // Returns the tangent of the input angle. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK inline scalarf RTM_SIMD_CALL scalar_tan(scalarf_arg0 angle) RTM_NO_EXCEPT { // Use the identity: tan(angle) = sin(angle) / cos(angle) scalarf sin_ = scalar_sin(angle); scalarf cos_ = scalar_cos(angle); if (scalar_cast(cos_) == 0.0F) return scalar_set(std::copysign(std::numeric_limits::infinity(), scalar_cast(angle))); return scalar_div(sin_, cos_); } #endif ////////////////////////////////////////////////////////////////////////// // Returns the tangent of the input angle. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK inline float scalar_tan(float angle) RTM_NO_EXCEPT { #if defined(RTM_NEON_INTRINSICS) return std::tan(angle); #else // Use the identity: tan(angle) = sin(angle) / cos(angle) scalarf angle_ = scalar_set(angle); scalarf sin_ = scalar_sin(angle_); scalarf cos_ = scalar_cos(angle_); if (scalar_cast(cos_) == 0.0F) return std::copysign(std::numeric_limits::infinity(), angle); return scalar_cast(scalar_div(sin_, cos_)); #endif } #if defined(RTM_SSE2_INTRINSICS) ////////////////////////////////////////////////////////////////////////// // Returns the arc-tangent of the input. // Note that due to the sign ambiguity, atan cannot determine which quadrant // the value resides in. See scalar_atan2. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK inline scalarf RTM_SIMD_CALL scalar_atan(scalarf_arg0 value) RTM_NO_EXCEPT { // Use a degree 13 minimax approximation polynomial // See: GPGPU Programming for Games and Science (David H. Eberly) // Discard our sign, we'll restore it later const __m128i abs_mask = _mm_set_epi32(0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL, 0x7FFFFFFFULL); __m128 abs_value = _mm_and_ps(value.value, _mm_castsi128_ps(abs_mask)); // Compute our value __m128 is_larger_than_one = _mm_cmpgt_ss(abs_value, _mm_set_ps1(1.0F)); __m128 reciprocal = scalar_reciprocal(scalarf{ abs_value }).value; #if defined(RTM_AVX_INTRINSICS) __m128 x = _mm_blendv_ps(abs_value, reciprocal, is_larger_than_one); #else __m128 x = _mm_or_ps(_mm_andnot_ps(is_larger_than_one, abs_value), _mm_and_ps(reciprocal, is_larger_than_one)); #endif float x_s = _mm_cvtss_f32(x); float x2 = x_s * x_s; float result = (x2 * 7.2128853633444123e-3F) - 3.5059680836411644e-2F; result = (result * x2) + 8.1675882859940430e-2F; result = (result * x2) - 1.3374657325451267e-1F; result = (result * x2) + 1.9856563505717162e-1F; result = (result * x2) - 3.3324998579202170e-1F; result = (result * x2) + 1.0F; result = result * x_s; __m128 result_s = _mm_set_ps1(result); __m128 remapped = _mm_sub_ss(_mm_set_ps1(rtm::constants::half_pi()), result_s); // pi/2 - result #if defined(RTM_AVX_INTRINSICS) result_s = _mm_blendv_ps(result_s, remapped, is_larger_than_one); #else result_s = _mm_or_ps(_mm_andnot_ps(is_larger_than_one, result_s), _mm_and_ps(remapped, is_larger_than_one)); #endif // Keep the original sign result_s = _mm_or_ps(result_s, _mm_and_ps(value.value, _mm_set_ps1(-0.0F))); return scalarf{ result_s }; } #endif ////////////////////////////////////////////////////////////////////////// // Returns the arc-tangent of the input. // Note that due to the sign ambiguity, atan cannot determine which quadrant // the value resides in. See scalar_atan2. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK inline float RTM_SIMD_CALL scalar_atan(float value) RTM_NO_EXCEPT { #if defined(RTM_SSE2_INTRINSICS) return scalar_cast(scalar_atan(scalar_set(value))); #elif defined(RTM_NEON_INTRINSICS) return std::atan(value); #else // Use a degree 13 minimax approximation polynomial // See: GPGPU Programming for Games and Science (David H. Eberly) // Discard our sign, we'll restore it later float abs_value = scalar_abs(value); // Compute our value float x = abs_value > 1.0F ? scalar_reciprocal(abs_value) : abs_value; float x2 = x * x; float result = (x2 * 7.2128853633444123e-3F) - 3.5059680836411644e-2F; result = (result * x2) + 8.1675882859940430e-2F; result = (result * x2) - 1.3374657325451267e-1F; result = (result * x2) + 1.9856563505717162e-1F; result = (result * x2) - 3.3324998579202170e-1F; result = (result * x2) + 1.0F; result = result * x; if (abs_value > 1.0f) result = rtm::constants::half_pi() - result; // pi/2 - result // Keep the original sign result = value >= 0.0F ? result : -result; return result; #endif } #if defined(RTM_SSE2_INTRINSICS) ////////////////////////////////////////////////////////////////////////// // Returns the arc-tangent of [y/x] using the sign of the arguments to // determine the correct quadrant. // Y represents the proportion of the y-coordinate. // X represents the proportion of the x-coordinate. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK inline scalarf RTM_SIMD_CALL scalar_atan2(scalarf y, scalarf x) RTM_NO_EXCEPT { // If X == 0.0 and Y != 0.0, we return PI/2 with the sign of Y // If X == 0.0 and Y == 0.0, we return 0.0 // If X > 0.0, we return atan(y/x) // If X < 0.0, we return atan(y/x) + sign(Y) * PI // See: https://en.wikipedia.org/wiki/Atan2#Definition_and_computation const __m128 zero = _mm_setzero_ps(); __m128 is_x_zero = _mm_cmpeq_ss(x.value, zero); __m128 is_y_zero = _mm_cmpeq_ss(y.value, zero); __m128 inputs_are_zero = _mm_and_ps(is_x_zero, is_y_zero); __m128 is_x_positive = _mm_cmpgt_ss(x.value, zero); const __m128 sign_mask = _mm_set_ps(-0.0F, -0.0F, -0.0F, -0.0F); __m128 y_sign = _mm_and_ps(y.value, sign_mask); // If X == 0.0, our offset is PI/2 otherwise it is PI both with the sign of Y __m128 half_pi = _mm_set_ps1(rtm::constants::half_pi()); __m128 pi = _mm_set_ps1(rtm::constants::pi()); __m128 offset = _mm_or_ps(_mm_and_ps(is_x_zero, half_pi), _mm_andnot_ps(is_x_zero, pi)); offset = _mm_or_ps(offset, y_sign); // If X > 0.0, our offset is 0.0 offset = _mm_andnot_ps(is_x_positive, offset); // If X == 0.0 and Y == 0.0, our offset is 0.0 offset = _mm_andnot_ps(inputs_are_zero, offset); __m128 angle = _mm_div_ss(y.value, x.value); __m128 value = scalar_atan(scalarf{ angle }).value; // If X == 0.0, our value is 0.0 otherwise it is atan(y/x) value = _mm_or_ps(_mm_and_ps(is_x_zero, zero), _mm_andnot_ps(is_x_zero, value)); // If X == 0.0 and Y == 0.0, our value is 0.0 value = _mm_andnot_ps(inputs_are_zero, value); __m128 result = _mm_add_ss(value, offset); return scalarf{ result }; } #endif ////////////////////////////////////////////////////////////////////////// // Returns the arc-tangent of [y/x] using the sign of the arguments to // determine the correct quadrant. // Y represents the proportion of the y-coordinate. // X represents the proportion of the x-coordinate. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK inline float scalar_atan2(float y, float x) RTM_NO_EXCEPT { #if defined(RTM_SSE2_INTRINSICS) return scalar_cast(scalar_atan2(scalar_set(y), scalar_set(x))); #elif defined(RTM_NEON_INTRINSICS) return std::atan2(y, x); #else // If X == 0.0 and Y != 0.0, we return PI/2 with the sign of Y // If X == 0.0 and Y == 0.0, we return 0.0 // If X > 0.0, we return atan(y/x) // If X < 0.0, we return atan(y/x) + sign(Y) * PI // See: https://en.wikipedia.org/wiki/Atan2#Definition_and_computation if (x == 0.0F) { if (y == 0.0F) return 0.0F; return std::copysign(rtm::constants::half_pi(), y); } float value = scalar_atan(y / x); if (x > 0.0F) return value; float offset = std::copysign(rtm::constants::pi(), y); return value + offset; #endif } ////////////////////////////////////////////////////////////////////////// // Converts degrees into radians. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE constexpr float scalar_deg_to_rad(float deg) RTM_NO_EXCEPT { return deg * constants::pi_div_one_eighty(); } ////////////////////////////////////////////////////////////////////////// // Converts radians into degrees. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE constexpr float scalar_rad_to_deg(float rad) RTM_NO_EXCEPT { return rad * constants::one_eighty_div_pi(); } } RTM_IMPL_FILE_PRAGMA_POP