#pragma once //////////////////////////////////////////////////////////////////////////////// // The MIT License (MIT) // // Copyright (c) 2018 Nicholas Frechette & Animation Compression Library contributors // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. //////////////////////////////////////////////////////////////////////////////// #include "acl/core/error.h" #include "acl/core/impl/compiler_utils.h" #include #include #include ACL_IMPL_FILE_PRAGMA_PUSH namespace acl { ////////////////////////////////////////////////////////////////////////// // This enum dictates how interpolation samples are calculated based on the sample time. enum class sample_rounding_policy { ////////////////////////////////////////////////////////////////////////// // If the sample time lies between two samples, both sample indices // are returned and the interpolation alpha lies in between. none, ////////////////////////////////////////////////////////////////////////// // If the sample time lies between two samples, both sample indices // are returned and the interpolation will be 0.0. floor, ////////////////////////////////////////////////////////////////////////// // If the sample time lies between two samples, both sample indices // are returned and the interpolation will be 1.0. ceil, ////////////////////////////////////////////////////////////////////////// // If the sample time lies between two samples, both sample indices // are returned and the interpolation will be 0.0 or 1.0 depending // on which sample is nearest. nearest, }; ////////////////////////////////////////////////////////////////////////// // Calculates the sample indices and the interpolation required to linearly // interpolate when the samples are uniform. // The returned sample indices are clamped and do not loop. // If the sample rate is available, prefer using find_linear_interpolation_samples_with_sample_rate // instead. It is faster and more accurate. inline void find_linear_interpolation_samples_with_duration(uint32_t num_samples, float duration, float sample_time, sample_rounding_policy rounding_policy, uint32_t& out_sample_index0, uint32_t& out_sample_index1, float& out_interpolation_alpha) { // Samples are evenly spaced, trivially calculate the indices that we need ACL_ASSERT(duration >= 0.0F, "Invalid duration: %f", duration); ACL_ASSERT(sample_time >= 0.0F && sample_time <= duration, "Invalid sample time: 0.0 <= %f <= %f", sample_time, duration); ACL_ASSERT(num_samples > 0, "Invalid num_samples: %u", num_samples); const float sample_rate = duration == 0.0F ? 0.0F : (float(num_samples - 1) / duration); ACL_ASSERT(sample_rate >= 0.0F && rtm::scalar_is_finite(sample_rate), "Invalid sample_rate: %f", sample_rate); const float sample_index = sample_time * sample_rate; const uint32_t sample_index0 = static_cast(sample_index); const uint32_t sample_index1 = std::min(sample_index0 + 1, num_samples - 1); ACL_ASSERT(sample_index0 <= sample_index1 && sample_index1 < num_samples, "Invalid sample indices: 0 <= %u <= %u < %u", sample_index0, sample_index1, num_samples); const float interpolation_alpha = sample_index - float(sample_index0); ACL_ASSERT(interpolation_alpha >= 0.0F && interpolation_alpha <= 1.0F, "Invalid interpolation alpha: 0.0 <= %f <= 1.0", interpolation_alpha); out_sample_index0 = sample_index0; out_sample_index1 = sample_index1; switch (rounding_policy) { default: case sample_rounding_policy::none: out_interpolation_alpha = interpolation_alpha; break; case sample_rounding_policy::floor: out_interpolation_alpha = 0.0F; break; case sample_rounding_policy::ceil: out_interpolation_alpha = 1.0F; break; case sample_rounding_policy::nearest: out_interpolation_alpha = rtm::scalar_floor(interpolation_alpha + 0.5F); break; } } ////////////////////////////////////////////////////////////////////////// // Calculates the sample indices and the interpolation required to linearly // interpolate when the samples are uniform. // The returned sample indices are clamped and do not loop. inline void find_linear_interpolation_samples_with_sample_rate(uint32_t num_samples, float sample_rate, float sample_time, sample_rounding_policy rounding_policy, uint32_t& out_sample_index0, uint32_t& out_sample_index1, float& out_interpolation_alpha) { // Samples are evenly spaced, trivially calculate the indices that we need ACL_ASSERT(sample_rate >= 0.0F, "Invalid sample rate: %f", sample_rate); ACL_ASSERT(num_samples > 0, "Invalid num_samples: %u", num_samples); // TODO: Would it be faster to do the index calculation entirely with floating point? // SSE4 can floor with a single instruction. // We don't need the index1, there are no dependencies there, we can still convert the float index0 into an integer, do the min. // This would break the dependency chains, right now the index0 depends on sample_index and interpolation_alpha depends on index0. // Generating index0 is slow, and converting it back to float is slow. // If we keep index0 as a float and floor it as a float, we can calculate index1 at the same time as the interpolation alpha. const float sample_index = sample_time * sample_rate; const uint32_t sample_index0 = static_cast(sample_index); const uint32_t sample_index1 = std::min(sample_index0 + 1, num_samples - 1); ACL_ASSERT(sample_index0 <= sample_index1 && sample_index1 < num_samples, "Invalid sample indices: 0 <= %u <= %u < %u", sample_index0, sample_index1, num_samples); const float interpolation_alpha = sample_index - float(sample_index0); ACL_ASSERT(interpolation_alpha >= 0.0F && interpolation_alpha <= 1.0F, "Invalid interpolation alpha: 0.0 <= %f <= 1.0", interpolation_alpha); out_sample_index0 = sample_index0; out_sample_index1 = sample_index1; switch (rounding_policy) { default: case sample_rounding_policy::none: out_interpolation_alpha = interpolation_alpha; break; case sample_rounding_policy::floor: out_interpolation_alpha = 0.0F; break; case sample_rounding_policy::ceil: out_interpolation_alpha = 1.0F; break; case sample_rounding_policy::nearest: out_interpolation_alpha = rtm::scalar_floor(interpolation_alpha + 0.5F); break; } } } ACL_IMPL_FILE_PRAGMA_POP