#pragma once //////////////////////////////////////////////////////////////////////////////// // The MIT License (MIT) // // Copyright (c) 2019 Nicholas Frechette & Realtime Math contributors // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. //////////////////////////////////////////////////////////////////////////////// #include "rtm/math.h" #include "rtm/quatd.h" #include "rtm/vector4d.h" #include "rtm/impl/compiler_utils.h" RTM_IMPL_FILE_PRAGMA_PUSH namespace rtm { ////////////////////////////////////////////////////////////////////////// // Returns the quaternion on the hypersphere with a positive [w] component // that represents the same 3D rotation as the input. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE quatd quat_ensure_positive_w(const quatd& input) RTM_NO_EXCEPT { return quat_get_w(input) >= 0.0 ? input : quat_neg(input); } ////////////////////////////////////////////////////////////////////////// // Returns a quaternion constructed from a vector3 representing the [xyz] // components while reconstructing the [w] component by assuming it is positive. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE quatd quat_from_positive_w(const vector4d& input) RTM_NO_EXCEPT { const double input_x = vector_get_x(input); const double input_y = vector_get_y(input); const double input_z = vector_get_z(input); // Operation order is important here, due to rounding, ((1.0 - (X*X)) - Y*Y) - Z*Z is more accurate than 1.0 - dot3(xyz, xyz) const double w_squared = ((1.0 - (input_x * input_x)) - (input_y * input_y)) - (input_z * input_z); // w_squared can be negative either due to rounding or due to quantization imprecision, we take the absolute value // to ensure the resulting quaternion is always normalized with a positive W component const double w = scalar_sqrt(scalar_abs(w_squared)); return quat_set_w(vector_to_quat(input), w); } } RTM_IMPL_FILE_PRAGMA_POP