#pragma once //////////////////////////////////////////////////////////////////////////////// // The MIT License (MIT) // // Copyright (c) 2018 Nicholas Frechette & Realtime Math contributors // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. //////////////////////////////////////////////////////////////////////////////// #include "rtm/macros.h" #include "rtm/math.h" #include "rtm/matrix3x3f.h" #include "rtm/vector4f.h" #include "rtm/impl/compiler_utils.h" #include "rtm/impl/matrix_common.h" RTM_IMPL_FILE_PRAGMA_PUSH namespace rtm { ////////////////////////////////////////////////////////////////////////// // Returns the desired 4x4 matrix axis. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE constexpr vector4f RTM_SIMD_CALL matrix_get_axis(matrix4x4f_arg0 input, axis4 axis) RTM_NO_EXCEPT { return axis == axis4::x ? input.x_axis : (axis == axis4::y ? input.y_axis : (axis == axis4::z ? input.z_axis : input.w_axis)); } ////////////////////////////////////////////////////////////////////////// // Multiplies two 4x4 matrices. // Multiplication order is as follow: local_to_world = matrix_mul(local_to_object, object_to_world) ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK inline matrix4x4f RTM_SIMD_CALL matrix_mul(matrix4x4f_arg0 lhs, matrix4x4f_arg1 rhs) RTM_NO_EXCEPT { vector4f tmp = vector_mul(vector_dup_x(lhs.x_axis), rhs.x_axis); tmp = vector_mul_add(vector_dup_y(lhs.x_axis), rhs.y_axis, tmp); tmp = vector_mul_add(vector_dup_z(lhs.x_axis), rhs.z_axis, tmp); vector4f x_axis = tmp; tmp = vector_mul(vector_dup_x(lhs.y_axis), rhs.x_axis); tmp = vector_mul_add(vector_dup_y(lhs.y_axis), rhs.y_axis, tmp); tmp = vector_mul_add(vector_dup_z(lhs.y_axis), rhs.z_axis, tmp); vector4f y_axis = tmp; tmp = vector_mul(vector_dup_x(lhs.z_axis), rhs.x_axis); tmp = vector_mul_add(vector_dup_y(lhs.z_axis), rhs.y_axis, tmp); tmp = vector_mul_add(vector_dup_z(lhs.z_axis), rhs.z_axis, tmp); vector4f z_axis = tmp; tmp = vector_mul(vector_dup_x(lhs.w_axis), rhs.x_axis); tmp = vector_mul_add(vector_dup_y(lhs.w_axis), rhs.y_axis, tmp); tmp = vector_mul_add(vector_dup_z(lhs.w_axis), rhs.z_axis, tmp); vector4f w_axis = vector_add(rhs.w_axis, tmp); return matrix4x4f{ x_axis, y_axis, z_axis, w_axis }; } ////////////////////////////////////////////////////////////////////////// // Multiplies a 4x4 matrix and a 4D vector. // Multiplication order is as follow: world_position = matrix_mul(local_position, local_to_world) ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE vector4f RTM_SIMD_CALL matrix_mul_vector(vector4f_arg0 vec4, matrix4x4f_arg0 mtx) RTM_NO_EXCEPT { vector4f tmp; tmp = vector_mul(vector_dup_x(vec4), mtx.x_axis); tmp = vector_mul_add(vector_dup_y(vec4), mtx.y_axis, tmp); tmp = vector_mul_add(vector_dup_z(vec4), mtx.z_axis, tmp); tmp = vector_mul_add(vector_dup_w(vec4), mtx.w_axis, tmp); return tmp; } ////////////////////////////////////////////////////////////////////////// // Transposes a 4x4 matrix. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE matrix4x4f RTM_SIMD_CALL matrix_transpose(matrix4x4f_arg0 input) RTM_NO_EXCEPT { vector4f x_axis; vector4f y_axis; vector4f z_axis; vector4f w_axis; RTM_MATRIXF_TRANSPOSE_4X4(input.x_axis, input.y_axis, input.z_axis, input.w_axis, x_axis, y_axis, z_axis, w_axis); return matrix4x4f{ x_axis, y_axis, z_axis, w_axis }; } ////////////////////////////////////////////////////////////////////////// // Inverses a 4x4 matrix. // If the input matrix is not invertible, the result is undefined. // For a safe alternative, supply a fallback value and a threshold. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK inline matrix4x4f RTM_SIMD_CALL matrix_inverse(matrix4x4f_arg0 input) RTM_NO_EXCEPT { matrix4x4f input_transposed = matrix_transpose(input); vector4f v00 = vector_mix(input_transposed.z_axis, input_transposed.z_axis); vector4f v01 = vector_mix(input_transposed.x_axis, input_transposed.x_axis); vector4f v02 = vector_mix(input_transposed.z_axis, input_transposed.x_axis); vector4f v10 = vector_mix(input_transposed.w_axis, input_transposed.w_axis); vector4f v11 = vector_mix(input_transposed.y_axis, input_transposed.y_axis); vector4f v12 = vector_mix(input_transposed.w_axis, input_transposed.y_axis); vector4f d0 = vector_mul(v00, v10); vector4f d1 = vector_mul(v01, v11); vector4f d2 = vector_mul(v02, v12); v00 = vector_mix(input_transposed.z_axis, input_transposed.z_axis); v01 = vector_mix(input_transposed.x_axis, input_transposed.x_axis); v02 = vector_mix(input_transposed.z_axis, input_transposed.x_axis); v10 = vector_mix(input_transposed.w_axis, input_transposed.w_axis); v11 = vector_mix(input_transposed.y_axis, input_transposed.y_axis); v12 = vector_mix(input_transposed.w_axis, input_transposed.y_axis); d0 = vector_neg_mul_sub(v00, v10, d0); d1 = vector_neg_mul_sub(v01, v11, d1); d2 = vector_neg_mul_sub(v02, v12, d2); v00 = vector_mix(input_transposed.y_axis, input_transposed.y_axis); v01 = vector_mix(input_transposed.x_axis, input_transposed.x_axis); v02 = vector_mix(input_transposed.w_axis, input_transposed.w_axis); vector4f v03 = vector_mix(input_transposed.z_axis, input_transposed.z_axis); v10 = vector_mix(d0, d2); v11 = vector_mix(d0, d2); v12 = vector_mix(d1, d2); vector4f v13 = vector_mix(d1, d2); vector4f c0 = vector_mul(v00, v10); vector4f c2 = vector_mul(v01, v11); vector4f c4 = vector_mul(v02, v12); vector4f c6 = vector_mul(v03, v13); v00 = vector_mix(input_transposed.y_axis, input_transposed.y_axis); v01 = vector_mix(input_transposed.x_axis, input_transposed.x_axis); v02 = vector_mix(input_transposed.w_axis, input_transposed.w_axis); v03 = vector_mix(input_transposed.z_axis, input_transposed.z_axis); v10 = vector_mix(d0, d2); v11 = vector_mix(d0, d2); v12 = vector_mix(d1, d2); v13 = vector_mix(d1, d2); c0 = vector_neg_mul_sub(v00, v10, c0); c2 = vector_neg_mul_sub(v01, v11, c2); c4 = vector_neg_mul_sub(v02, v12, c4); c6 = vector_neg_mul_sub(v03, v13, c6); v00 = vector_mix(input_transposed.y_axis, input_transposed.y_axis); v01 = vector_mix(input_transposed.x_axis, input_transposed.x_axis); v02 = vector_mix(input_transposed.w_axis, input_transposed.w_axis); v03 = vector_mix(input_transposed.z_axis, input_transposed.z_axis); v10 = vector_mix(d0, d2); v11 = vector_mix(d0, d2); v12 = vector_mix(d1, d2); v13 = vector_mix(d1, d2); vector4f c1 = vector_neg_mul_sub(v00, v10, c0); c0 = vector_mul_add(v00, v10, c0); vector4f c3 = vector_mul_add(v01, v11, c2); c2 = vector_neg_mul_sub(v01, v11, c2); vector4f c5 = vector_neg_mul_sub(v02, v12, c4); c4 = vector_mul_add(v02, v12, c4); vector4f c7 = vector_mul_add(v03, v13, c6); c6 = vector_neg_mul_sub(v03, v13, c6); vector4f x_axis = vector_mix(c0, c1); vector4f y_axis = vector_mix(c2, c3); vector4f z_axis = vector_mix(c4, c5); vector4f w_axis = vector_mix(c6, c7); const scalarf det = vector_dot(x_axis, input_transposed.x_axis); const scalarf inv_det_s = scalar_reciprocal(det); const vector4f inv_det = vector_set(inv_det_s); x_axis = vector_mul(x_axis, inv_det); y_axis = vector_mul(y_axis, inv_det); z_axis = vector_mul(z_axis, inv_det); w_axis = vector_mul(w_axis, inv_det); return matrix4x4f{ x_axis, y_axis, z_axis, w_axis }; } ////////////////////////////////////////////////////////////////////////// // Inverses a 4x4 matrix. // If the input matrix has a determinant whose absolute value is below the supplied threshold, the // fall back value is returned instead. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK inline matrix4x4f RTM_SIMD_CALL matrix_inverse(matrix4x4f_arg0 input, matrix4x4f_arg1 fallback, float threshold = 1.0E-8F) RTM_NO_EXCEPT { matrix4x4f input_transposed = matrix_transpose(input); vector4f v00 = vector_mix(input_transposed.z_axis, input_transposed.z_axis); vector4f v01 = vector_mix(input_transposed.x_axis, input_transposed.x_axis); vector4f v02 = vector_mix(input_transposed.z_axis, input_transposed.x_axis); vector4f v10 = vector_mix(input_transposed.w_axis, input_transposed.w_axis); vector4f v11 = vector_mix(input_transposed.y_axis, input_transposed.y_axis); vector4f v12 = vector_mix(input_transposed.w_axis, input_transposed.y_axis); vector4f d0 = vector_mul(v00, v10); vector4f d1 = vector_mul(v01, v11); vector4f d2 = vector_mul(v02, v12); v00 = vector_mix(input_transposed.z_axis, input_transposed.z_axis); v01 = vector_mix(input_transposed.x_axis, input_transposed.x_axis); v02 = vector_mix(input_transposed.z_axis, input_transposed.x_axis); v10 = vector_mix(input_transposed.w_axis, input_transposed.w_axis); v11 = vector_mix(input_transposed.y_axis, input_transposed.y_axis); v12 = vector_mix(input_transposed.w_axis, input_transposed.y_axis); d0 = vector_neg_mul_sub(v00, v10, d0); d1 = vector_neg_mul_sub(v01, v11, d1); d2 = vector_neg_mul_sub(v02, v12, d2); v00 = vector_mix(input_transposed.y_axis, input_transposed.y_axis); v01 = vector_mix(input_transposed.x_axis, input_transposed.x_axis); v02 = vector_mix(input_transposed.w_axis, input_transposed.w_axis); vector4f v03 = vector_mix(input_transposed.z_axis, input_transposed.z_axis); v10 = vector_mix(d0, d2); v11 = vector_mix(d0, d2); v12 = vector_mix(d1, d2); vector4f v13 = vector_mix(d1, d2); vector4f c0 = vector_mul(v00, v10); vector4f c2 = vector_mul(v01, v11); vector4f c4 = vector_mul(v02, v12); vector4f c6 = vector_mul(v03, v13); v00 = vector_mix(input_transposed.y_axis, input_transposed.y_axis); v01 = vector_mix(input_transposed.x_axis, input_transposed.x_axis); v02 = vector_mix(input_transposed.w_axis, input_transposed.w_axis); v03 = vector_mix(input_transposed.z_axis, input_transposed.z_axis); v10 = vector_mix(d0, d2); v11 = vector_mix(d0, d2); v12 = vector_mix(d1, d2); v13 = vector_mix(d1, d2); c0 = vector_neg_mul_sub(v00, v10, c0); c2 = vector_neg_mul_sub(v01, v11, c2); c4 = vector_neg_mul_sub(v02, v12, c4); c6 = vector_neg_mul_sub(v03, v13, c6); v00 = vector_mix(input_transposed.y_axis, input_transposed.y_axis); v01 = vector_mix(input_transposed.x_axis, input_transposed.x_axis); v02 = vector_mix(input_transposed.w_axis, input_transposed.w_axis); v03 = vector_mix(input_transposed.z_axis, input_transposed.z_axis); v10 = vector_mix(d0, d2); v11 = vector_mix(d0, d2); v12 = vector_mix(d1, d2); v13 = vector_mix(d1, d2); vector4f c1 = vector_neg_mul_sub(v00, v10, c0); c0 = vector_mul_add(v00, v10, c0); vector4f c3 = vector_mul_add(v01, v11, c2); c2 = vector_neg_mul_sub(v01, v11, c2); vector4f c5 = vector_neg_mul_sub(v02, v12, c4); c4 = vector_mul_add(v02, v12, c4); vector4f c7 = vector_mul_add(v03, v13, c6); c6 = vector_neg_mul_sub(v03, v13, c6); vector4f x_axis = vector_mix(c0, c1); vector4f y_axis = vector_mix(c2, c3); vector4f z_axis = vector_mix(c4, c5); vector4f w_axis = vector_mix(c6, c7); const scalarf det = vector_dot(x_axis, input_transposed.x_axis); if (scalar_cast(scalar_abs(det)) < threshold) return fallback; const scalarf inv_det_s = scalar_reciprocal(det); const vector4f inv_det = vector_set(inv_det_s); x_axis = vector_mul(x_axis, inv_det); y_axis = vector_mul(y_axis, inv_det); z_axis = vector_mul(z_axis, inv_det); w_axis = vector_mul(w_axis, inv_det); return matrix4x4f{ x_axis, y_axis, z_axis, w_axis }; } ////////////////////////////////////////////////////////////////////////// // Returns the determinant of the input 4x4 matrix. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK inline scalarf RTM_SIMD_CALL matrix_determinant(matrix4x4f_arg0 input) RTM_NO_EXCEPT { matrix4x4f input_transposed = matrix_transpose(input); vector4f v00 = vector_mix(input_transposed.z_axis, input_transposed.z_axis); vector4f v01 = vector_mix(input_transposed.x_axis, input_transposed.x_axis); vector4f v02 = vector_mix(input_transposed.z_axis, input_transposed.x_axis); vector4f v10 = vector_mix(input_transposed.w_axis, input_transposed.w_axis); vector4f v11 = vector_mix(input_transposed.y_axis, input_transposed.y_axis); vector4f v12 = vector_mix(input_transposed.w_axis, input_transposed.y_axis); vector4f d0 = vector_mul(v00, v10); vector4f d1 = vector_mul(v01, v11); vector4f d2 = vector_mul(v02, v12); v00 = vector_mix(input_transposed.z_axis, input_transposed.z_axis); v01 = vector_mix(input_transposed.x_axis, input_transposed.x_axis); v02 = vector_mix(input_transposed.z_axis, input_transposed.x_axis); v10 = vector_mix(input_transposed.w_axis, input_transposed.w_axis); v11 = vector_mix(input_transposed.y_axis, input_transposed.y_axis); v12 = vector_mix(input_transposed.w_axis, input_transposed.y_axis); d0 = vector_neg_mul_sub(v00, v10, d0); d1 = vector_neg_mul_sub(v01, v11, d1); d2 = vector_neg_mul_sub(v02, v12, d2); v00 = vector_mix(input_transposed.y_axis, input_transposed.y_axis); v01 = vector_mix(input_transposed.x_axis, input_transposed.x_axis); v02 = vector_mix(input_transposed.w_axis, input_transposed.w_axis); vector4f v03 = vector_mix(input_transposed.z_axis, input_transposed.z_axis); v10 = vector_mix(d0, d2); v11 = vector_mix(d0, d2); v12 = vector_mix(d1, d2); vector4f v13 = vector_mix(d1, d2); vector4f c0 = vector_mul(v00, v10); vector4f c2 = vector_mul(v01, v11); vector4f c4 = vector_mul(v02, v12); vector4f c6 = vector_mul(v03, v13); v00 = vector_mix(input_transposed.y_axis, input_transposed.y_axis); v01 = vector_mix(input_transposed.x_axis, input_transposed.x_axis); v02 = vector_mix(input_transposed.w_axis, input_transposed.w_axis); v03 = vector_mix(input_transposed.z_axis, input_transposed.z_axis); v10 = vector_mix(d0, d2); v11 = vector_mix(d0, d2); v12 = vector_mix(d1, d2); v13 = vector_mix(d1, d2); c0 = vector_neg_mul_sub(v00, v10, c0); c2 = vector_neg_mul_sub(v01, v11, c2); c4 = vector_neg_mul_sub(v02, v12, c4); c6 = vector_neg_mul_sub(v03, v13, c6); v00 = vector_mix(input_transposed.y_axis, input_transposed.y_axis); v01 = vector_mix(input_transposed.x_axis, input_transposed.x_axis); v02 = vector_mix(input_transposed.w_axis, input_transposed.w_axis); v03 = vector_mix(input_transposed.z_axis, input_transposed.z_axis); v10 = vector_mix(d0, d2); v11 = vector_mix(d0, d2); v12 = vector_mix(d1, d2); v13 = vector_mix(d1, d2); vector4f c1 = vector_neg_mul_sub(v00, v10, c0); c0 = vector_mul_add(v00, v10, c0); c2 = vector_neg_mul_sub(v01, v11, c2); c4 = vector_mul_add(v02, v12, c4); c6 = vector_neg_mul_sub(v03, v13, c6); vector4f x_axis = vector_mix(c0, c1); return vector_dot(x_axis, input_transposed.x_axis); } ////////////////////////////////////////////////////////////////////////// // Returns the minor of the input 4x4 matrix. // See: https://en.wikipedia.org/wiki/Minor_(linear_algebra) // The minor is the determinant of the sub-matrix input when the specified // row and column are removed. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK inline scalarf RTM_SIMD_CALL matrix_minor(matrix4x4f_arg0 input, axis4 row, axis4 column) RTM_NO_EXCEPT { vector4f row0; vector4f row1; vector4f row2; // Find which rows we need. if (row == axis4::x) { row0 = input.y_axis; row1 = input.z_axis; row2 = input.w_axis; } else if (row == axis4::y) { row0 = input.x_axis; row1 = input.z_axis; row2 = input.w_axis; } else if (row == axis4::z) { row0 = input.x_axis; row1 = input.y_axis; row2 = input.w_axis; } else { row0 = input.x_axis; row1 = input.y_axis; row2 = input.z_axis; } // Shift our row values into a proper 3x3 matrix if (column == axis4::x) { row0 = vector_mix(row0, row0); row1 = vector_mix(row1, row1); row2 = vector_mix(row2, row2); } else if (column == axis4::y) { row0 = vector_mix(row0, row0); row1 = vector_mix(row1, row1); row2 = vector_mix(row2, row2); } else if (column == axis4::z) { row0 = vector_mix(row0, row0); row1 = vector_mix(row1, row1); row2 = vector_mix(row2, row2); } else { // Already lined up } const matrix3x3f mtx = matrix_set(row0, row1, row2); return matrix_determinant(mtx); } ////////////////////////////////////////////////////////////////////////// // Returns the cofactor matrix of the input 4x4 matrix. // See: https://en.wikipedia.org/wiki/Minor_(linear_algebra)#Cofactor_expansion_of_the_determinant ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK inline matrix4x4f RTM_SIMD_CALL matrix_cofactor(matrix4x4f_arg0 input) RTM_NO_EXCEPT { const scalarf minor_xx = matrix_minor(input, axis4::x, axis4::x); const scalarf minor_xy = matrix_minor(input, axis4::x, axis4::y); const scalarf minor_xz = matrix_minor(input, axis4::x, axis4::z); const scalarf minor_xw = matrix_minor(input, axis4::x, axis4::w); const scalarf minor_yx = matrix_minor(input, axis4::y, axis4::x); const scalarf minor_yy = matrix_minor(input, axis4::y, axis4::y); const scalarf minor_yz = matrix_minor(input, axis4::y, axis4::z); const scalarf minor_yw = matrix_minor(input, axis4::y, axis4::w); const scalarf minor_zx = matrix_minor(input, axis4::z, axis4::x); const scalarf minor_zy = matrix_minor(input, axis4::z, axis4::y); const scalarf minor_zz = matrix_minor(input, axis4::z, axis4::z); const scalarf minor_zw = matrix_minor(input, axis4::z, axis4::w); const scalarf minor_wx = matrix_minor(input, axis4::w, axis4::x); const scalarf minor_wy = matrix_minor(input, axis4::w, axis4::y); const scalarf minor_wz = matrix_minor(input, axis4::w, axis4::z); const scalarf minor_ww = matrix_minor(input, axis4::w, axis4::w); const vector4f xz_axis_signs = vector_set(1.0F, -1.0F, 1.0F, -1.0F); const vector4f yw_axis_signs = vector_set(-1.0F, 1.0F, -1.0F, 1.0F); const vector4f x_axis = vector_mul(vector_set(minor_xx, minor_xy, minor_xz, minor_xw), xz_axis_signs); const vector4f y_axis = vector_mul(vector_set(minor_yx, minor_yy, minor_yz, minor_yw), yw_axis_signs); const vector4f z_axis = vector_mul(vector_set(minor_zx, minor_zy, minor_zz, minor_zw), xz_axis_signs); const vector4f w_axis = vector_mul(vector_set(minor_wx, minor_wy, minor_wz, minor_ww), yw_axis_signs); return matrix4x4f{ x_axis, y_axis, z_axis, w_axis }; } ////////////////////////////////////////////////////////////////////////// // Returns the adjugate of the input matrix. // See: https://en.wikipedia.org/wiki/Adjugate_matrix ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK inline matrix4x4f RTM_SIMD_CALL matrix_adjugate(matrix4x4f_arg0 input) RTM_NO_EXCEPT { return matrix_transpose(matrix_cofactor(input)); } } RTM_IMPL_FILE_PRAGMA_POP