#pragma once //////////////////////////////////////////////////////////////////////////////// // The MIT License (MIT) // // Copyright (c) 2018 Nicholas Frechette & Realtime Math contributors // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. //////////////////////////////////////////////////////////////////////////////// #include "rtm/math.h" #include "rtm/vector4f.h" #include "rtm/vector4d.h" #include "rtm/quatf.h" #include "rtm/quatd.h" #include "rtm/type_traits.h" #include "rtm/impl/compiler_utils.h" RTM_IMPL_FILE_PRAGMA_PUSH namespace rtm { namespace rtm_impl { ////////////////////////////////////////////////////////////////////////// // A helper struct to convert a quaternion to matrices of similar width. // Note: We use a float type as a template argument because GCC loses alignment // attributes on template argument types. ////////////////////////////////////////////////////////////////////////// template struct matrix_from_quat_helper { using quat = typename float_traits::quat; using vector4 = typename float_traits::vector4; using matrix3x3 = typename float_traits::matrix3x3; using matrix3x4 = typename float_traits::matrix3x4; RTM_DISABLE_SECURITY_COOKIE_CHECK inline RTM_SIMD_CALL operator matrix3x3() const RTM_NO_EXCEPT { RTM_ASSERT(quat_is_normalized(quat_input), "Quaternion is not normalized"); const float_type x2 = quat_get_x(quat_input) + quat_get_x(quat_input); const float_type y2 = quat_get_y(quat_input) + quat_get_y(quat_input); const float_type z2 = quat_get_z(quat_input) + quat_get_z(quat_input); const float_type xx = quat_get_x(quat_input) * x2; const float_type xy = quat_get_x(quat_input) * y2; const float_type xz = quat_get_x(quat_input) * z2; const float_type yy = quat_get_y(quat_input) * y2; const float_type yz = quat_get_y(quat_input) * z2; const float_type zz = quat_get_z(quat_input) * z2; const float_type wx = quat_get_w(quat_input) * x2; const float_type wy = quat_get_w(quat_input) * y2; const float_type wz = quat_get_w(quat_input) * z2; const vector4 x_axis = vector_set(float_type(1.0) - (yy + zz), xy + wz, xz - wy, float_type(0.0)); const vector4 y_axis = vector_set(xy - wz, float_type(1.0) - (xx + zz), yz + wx, float_type(0.0)); const vector4 z_axis = vector_set(xz + wy, yz - wx, float_type(1.0) - (xx + yy), float_type(0.0)); return matrix3x3{ x_axis, y_axis, z_axis }; } RTM_DISABLE_SECURITY_COOKIE_CHECK inline RTM_SIMD_CALL operator matrix3x4() const RTM_NO_EXCEPT { RTM_ASSERT(quat_is_normalized(quat_input), "Quaternion is not normalized"); const float_type x2 = quat_get_x(quat_input) + quat_get_x(quat_input); const float_type y2 = quat_get_y(quat_input) + quat_get_y(quat_input); const float_type z2 = quat_get_z(quat_input) + quat_get_z(quat_input); const float_type xx = quat_get_x(quat_input) * x2; const float_type xy = quat_get_x(quat_input) * y2; const float_type xz = quat_get_x(quat_input) * z2; const float_type yy = quat_get_y(quat_input) * y2; const float_type yz = quat_get_y(quat_input) * z2; const float_type zz = quat_get_z(quat_input) * z2; const float_type wx = quat_get_w(quat_input) * x2; const float_type wy = quat_get_w(quat_input) * y2; const float_type wz = quat_get_w(quat_input) * z2; const vector4 x_axis = vector_set(float_type(1.0) - (yy + zz), xy + wz, xz - wy, float_type(0.0)); const vector4 y_axis = vector_set(xy - wz, float_type(1.0) - (xx + zz), yz + wx, float_type(0.0)); const vector4 z_axis = vector_set(xz + wy, yz - wx, float_type(1.0) - (xx + yy), float_type(0.0)); const vector4 w_axis = vector_zero(); return matrix3x4{ x_axis, y_axis, z_axis, w_axis }; } quat quat_input; }; ////////////////////////////////////////////////////////////////////////// // A helper struct to convert a 3D scale vector to matrices of similar width. // Note: We use a float type as a template argument because GCC loses alignment // attributes on template argument types. ////////////////////////////////////////////////////////////////////////// template struct matrix_from_scale_helper { using vector4 = typename float_traits::vector4; using matrix3x3 = typename float_traits::matrix3x3; using matrix3x4 = typename float_traits::matrix3x4; RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE RTM_SIMD_CALL operator matrix3x3() const RTM_NO_EXCEPT { const vector4 zero = vector_zero(); const vector4 x_axis = vector_mix(scale, zero); const vector4 y_axis = vector_mix(scale, zero); const vector4 z_axis = vector_mix(scale, zero); return matrix3x3{ x_axis, y_axis, z_axis }; } RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE RTM_SIMD_CALL operator matrix3x4() const RTM_NO_EXCEPT { const vector4 zero = vector_zero(); const vector4 x_axis = vector_mix(scale, zero); const vector4 y_axis = vector_mix(scale, zero); const vector4 z_axis = vector_mix(scale, zero); return matrix3x4{ x_axis, y_axis, z_axis, zero }; } vector4 scale; }; RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE constexpr vector4f RTM_SIMD_CALL matrix_get_axis(vector4f_arg0 x_axis, vector4f_arg1 y_axis, vector4f_arg2 z_axis, axis3 axis) { return axis == axis3::x ? x_axis : (axis == axis3::y ? y_axis : z_axis); } RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE constexpr const vector4d& RTM_SIMD_CALL matrix_get_axis(const vector4d& x_axis, const vector4d& y_axis, const vector4d& z_axis, axis3 axis) { return axis == axis3::x ? x_axis : (axis == axis3::y ? y_axis : z_axis); } ////////////////////////////////////////////////////////////////////////// // Converts a 3x3 matrix into a rotation quaternion. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK inline quatf RTM_SIMD_CALL quat_from_matrix(vector4f_arg0 x_axis, vector4f_arg1 y_axis, vector4f_arg2 z_axis) RTM_NO_EXCEPT { const vector4f zero = vector_zero(); if (vector_all_near_equal3(x_axis, zero) || vector_all_near_equal3(y_axis, zero) || vector_all_near_equal3(z_axis, zero)) return quat_identity(); // Zero scale not supported, return the identity const float x_axis_x = vector_get_x(x_axis); const float y_axis_y = vector_get_y(y_axis); const float z_axis_z = vector_get_z(z_axis); const float mtx_trace = x_axis_x + y_axis_y + z_axis_z; if (mtx_trace > 0.0F) { const float x_axis_y = vector_get_y(x_axis); const float x_axis_z = vector_get_z(x_axis); const float y_axis_x = vector_get_x(y_axis); const float y_axis_z = vector_get_z(y_axis); const float z_axis_x = vector_get_x(z_axis); const float z_axis_y = vector_get_y(z_axis); const float inv_trace = scalar_sqrt_reciprocal(mtx_trace + 1.0F); const float half_inv_trace = inv_trace * 0.5F; const float x = (y_axis_z - z_axis_y) * half_inv_trace; const float y = (z_axis_x - x_axis_z) * half_inv_trace; const float z = (x_axis_y - y_axis_x) * half_inv_trace; const float w = scalar_reciprocal(inv_trace) * 0.5F; return quat_normalize(quat_set(x, y, z, w)); } else { // Note that axis3::xyz have the same values as mix4::xyz int32_t best_axis = (int32_t)axis4::x; if (y_axis_y > x_axis_x) best_axis = (int32_t)axis4::y; if (z_axis_z > vector_get_component(matrix_get_axis(x_axis, y_axis, z_axis, axis3(best_axis)), mix4(best_axis))) best_axis = (int32_t)axis4::z; const int32_t next_best_axis = (best_axis + 1) % 3; const int32_t next_next_best_axis = (next_best_axis + 1) % 3; const float mtx_pseudo_trace = 1.0F + vector_get_component(matrix_get_axis(x_axis, y_axis, z_axis, axis3(best_axis)), mix4(best_axis)) - vector_get_component(matrix_get_axis(x_axis, y_axis, z_axis, axis3(next_best_axis)), mix4(next_best_axis)) - vector_get_component(matrix_get_axis(x_axis, y_axis, z_axis, axis3(next_next_best_axis)), mix4(next_next_best_axis)); const float inv_pseudo_trace = scalar_sqrt_reciprocal(mtx_pseudo_trace); const float half_inv_pseudo_trace = inv_pseudo_trace * 0.5F; float quat_values[4]; quat_values[best_axis] = scalar_reciprocal(inv_pseudo_trace) * 0.5F; quat_values[next_best_axis] = half_inv_pseudo_trace * (vector_get_component(matrix_get_axis(x_axis, y_axis, z_axis, axis3(best_axis)), mix4(next_best_axis)) + vector_get_component(matrix_get_axis(x_axis, y_axis, z_axis, axis3(next_best_axis)), mix4(best_axis))); quat_values[next_next_best_axis] = half_inv_pseudo_trace * (vector_get_component(matrix_get_axis(x_axis, y_axis, z_axis, axis3(best_axis)), mix4(next_next_best_axis)) + vector_get_component(matrix_get_axis(x_axis, y_axis, z_axis, axis3(next_next_best_axis)), mix4(best_axis))); quat_values[3] = half_inv_pseudo_trace * (vector_get_component(matrix_get_axis(x_axis, y_axis, z_axis, axis3(next_best_axis)), mix4(next_next_best_axis)) - vector_get_component(matrix_get_axis(x_axis, y_axis, z_axis, axis3(next_next_best_axis)), mix4(next_best_axis))); return quat_normalize(quat_load(&quat_values[0])); } } ////////////////////////////////////////////////////////////////////////// // Converts a 3x3 matrix into a rotation quaternion. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK inline quatd RTM_SIMD_CALL quat_from_matrix(const vector4d& x_axis, const vector4d& y_axis, const vector4d& z_axis) RTM_NO_EXCEPT { const vector4d zero = vector_zero(); if (vector_all_near_equal3(x_axis, zero) || vector_all_near_equal3(y_axis, zero) || vector_all_near_equal3(z_axis, zero)) return quat_identity(); // Zero scale not supported, return the identity const double x_axis_x = vector_get_x(x_axis); const double y_axis_y = vector_get_y(y_axis); const double z_axis_z = vector_get_z(z_axis); const double mtx_trace = x_axis_x + y_axis_y + z_axis_z; if (mtx_trace > 0.0) { const double x_axis_y = vector_get_y(x_axis); const double x_axis_z = vector_get_z(x_axis); const double y_axis_x = vector_get_x(y_axis); const double y_axis_z = vector_get_z(y_axis); const double z_axis_x = vector_get_x(z_axis); const double z_axis_y = vector_get_y(z_axis); const double inv_trace = scalar_sqrt_reciprocal(mtx_trace + 1.0); const double half_inv_trace = inv_trace * 0.5; const double x = (y_axis_z - z_axis_y) * half_inv_trace; const double y = (z_axis_x - x_axis_z) * half_inv_trace; const double z = (x_axis_y - y_axis_x) * half_inv_trace; const double w = scalar_reciprocal(inv_trace) * 0.5; return quat_normalize(quat_set(x, y, z, w)); } else { // Note that axis3::xyz have the same values as mix4::xyz int32_t best_axis = (int32_t)axis3::x; if (y_axis_y > x_axis_x) best_axis = (int32_t)axis3::y; if (z_axis_z > vector_get_component(matrix_get_axis(x_axis, y_axis, z_axis, axis3(best_axis)), mix4(best_axis))) best_axis = (int32_t)axis3::z; const int32_t next_best_axis = (best_axis + 1) % 3; const int32_t next_next_best_axis = (next_best_axis + 1) % 3; const double mtx_pseudo_trace = 1.0 + vector_get_component(matrix_get_axis(x_axis, y_axis, z_axis, axis3(best_axis)), mix4(best_axis)) - vector_get_component(matrix_get_axis(x_axis, y_axis, z_axis, axis3(next_best_axis)), mix4(next_best_axis)) - vector_get_component(matrix_get_axis(x_axis, y_axis, z_axis, axis3(next_next_best_axis)), mix4(next_next_best_axis)); const double inv_pseudo_trace = scalar_sqrt_reciprocal(mtx_pseudo_trace); const double half_inv_pseudo_trace = inv_pseudo_trace * 0.5; double quat_values[4]; quat_values[best_axis] = scalar_reciprocal(inv_pseudo_trace) * 0.5; quat_values[next_best_axis] = half_inv_pseudo_trace * (vector_get_component(matrix_get_axis(x_axis, y_axis, z_axis, axis3(best_axis)), mix4(next_best_axis)) + vector_get_component(matrix_get_axis(x_axis, y_axis, z_axis, axis3(next_best_axis)), mix4(best_axis))); quat_values[next_next_best_axis] = half_inv_pseudo_trace * (vector_get_component(matrix_get_axis(x_axis, y_axis, z_axis, axis3(best_axis)), mix4(next_next_best_axis)) + vector_get_component(matrix_get_axis(x_axis, y_axis, z_axis, axis3(next_next_best_axis)), mix4(best_axis))); quat_values[3] = half_inv_pseudo_trace * (vector_get_component(matrix_get_axis(x_axis, y_axis, z_axis, axis3(next_best_axis)), mix4(next_next_best_axis)) - vector_get_component(matrix_get_axis(x_axis, y_axis, z_axis, axis3(next_next_best_axis)), mix4(next_best_axis))); return quat_normalize(quat_load(&quat_values[0])); } } } ////////////////////////////////////////////////////////////////////////// // Converts a rotation quaternion into a 3x3 or 3x4 affine matrix. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK constexpr rtm_impl::matrix_from_quat_helper RTM_SIMD_CALL matrix_from_quat(quatf_arg0 quat) RTM_NO_EXCEPT { return rtm_impl::matrix_from_quat_helper{ quat }; } ////////////////////////////////////////////////////////////////////////// // Converts a rotation quaternion into a 3x3 or 3x4 affine matrix. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK constexpr rtm_impl::matrix_from_quat_helper RTM_SIMD_CALL matrix_from_quat(const quatd& quat) RTM_NO_EXCEPT { return rtm_impl::matrix_from_quat_helper{ quat }; } ////////////////////////////////////////////////////////////////////////// // Converts a rotation quaternion into a 3x3 or 3x4 affine matrix. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK constexpr rtm_impl::matrix_from_quat_helper RTM_SIMD_CALL matrix_from_rotation(quatf_arg0 quat) RTM_NO_EXCEPT { return rtm_impl::matrix_from_quat_helper{ quat }; } ////////////////////////////////////////////////////////////////////////// // Converts a rotation quaternion into a 3x3 or 3x4 affine matrix. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK constexpr rtm_impl::matrix_from_quat_helper RTM_SIMD_CALL matrix_from_rotation(const quatd& quat) RTM_NO_EXCEPT { return rtm_impl::matrix_from_quat_helper{ quat }; } ////////////////////////////////////////////////////////////////////////// // Converts a 3D scale vector into a 3x3 or 3x4 affine matrix. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE constexpr rtm_impl::matrix_from_scale_helper RTM_SIMD_CALL matrix_from_scale(vector4f_arg0 scale) RTM_NO_EXCEPT { return rtm_impl::matrix_from_scale_helper{ scale }; } ////////////////////////////////////////////////////////////////////////// // Converts a 3D scale vector into a 3x3 or 3x4 affine matrix. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE constexpr rtm_impl::matrix_from_scale_helper RTM_SIMD_CALL matrix_from_scale(const vector4d& scale) RTM_NO_EXCEPT { return rtm_impl::matrix_from_scale_helper{ scale }; } } RTM_IMPL_FILE_PRAGMA_POP