#pragma once //////////////////////////////////////////////////////////////////////////////// // The MIT License (MIT) // // Copyright (c) 2019 Nicholas Frechette & Realtime Math contributors // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. //////////////////////////////////////////////////////////////////////////////// #include "rtm/math.h" #include "rtm/impl/compiler_utils.h" RTM_IMPL_FILE_PRAGMA_PUSH namespace rtm { namespace rtm_impl { ////////////////////////////////////////////////////////////////////////// // This is a helper struct to allow a single consistent API between // various vector types when the semantics are identical but the return // type differs. Implicit coercion is used to return the desired value // at the call site. ////////////////////////////////////////////////////////////////////////// struct mask4_bool_set { RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE RTM_SIMD_CALL operator mask4d() const RTM_NO_EXCEPT { #if defined(RTM_SSE2_INTRINSICS) const uint64_t x_mask = x ? 0xFFFFFFFFFFFFFFFFULL : 0; const uint64_t y_mask = y ? 0xFFFFFFFFFFFFFFFFULL : 0; const uint64_t z_mask = z ? 0xFFFFFFFFFFFFFFFFULL : 0; const uint64_t w_mask = w ? 0xFFFFFFFFFFFFFFFFULL : 0; return mask4d{ _mm_castsi128_pd(_mm_set_epi64x(y_mask, x_mask)), _mm_castsi128_pd(_mm_set_epi64x(w_mask, z_mask)) }; #else const uint64_t x_mask = x ? 0xFFFFFFFFFFFFFFFFULL : 0; const uint64_t y_mask = y ? 0xFFFFFFFFFFFFFFFFULL : 0; const uint64_t z_mask = z ? 0xFFFFFFFFFFFFFFFFULL : 0; const uint64_t w_mask = w ? 0xFFFFFFFFFFFFFFFFULL : 0; return mask4d{ x_mask, y_mask, z_mask, w_mask }; #endif } RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE RTM_SIMD_CALL operator mask4q() const RTM_NO_EXCEPT { #if defined(RTM_SSE2_INTRINSICS) const uint64_t x_mask = x ? 0xFFFFFFFFFFFFFFFFULL : 0; const uint64_t y_mask = y ? 0xFFFFFFFFFFFFFFFFULL : 0; const uint64_t z_mask = z ? 0xFFFFFFFFFFFFFFFFULL : 0; const uint64_t w_mask = w ? 0xFFFFFFFFFFFFFFFFULL : 0; return mask4q{ _mm_set_epi64x(y_mask, x_mask), _mm_set_epi64x(w_mask, z_mask) }; #else const uint64_t x_mask = x ? 0xFFFFFFFFFFFFFFFFULL : 0; const uint64_t y_mask = y ? 0xFFFFFFFFFFFFFFFFULL : 0; const uint64_t z_mask = z ? 0xFFFFFFFFFFFFFFFFULL : 0; const uint64_t w_mask = w ? 0xFFFFFFFFFFFFFFFFULL : 0; return mask4q{ x_mask, y_mask, z_mask, w_mask }; #endif } RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE RTM_SIMD_CALL operator mask4f() const RTM_NO_EXCEPT { const uint32_t x_mask = x ? 0xFFFFFFFFU : 0; const uint32_t y_mask = y ? 0xFFFFFFFFU : 0; const uint32_t z_mask = z ? 0xFFFFFFFFU : 0; const uint32_t w_mask = w ? 0xFFFFFFFFU : 0; #if defined(RTM_SSE2_INTRINSICS) return _mm_castsi128_ps(_mm_set_epi32(w_mask, z_mask, y_mask, x_mask)); #elif defined(RTM_NEON_INTRINSICS) float32x2_t V0 = vcreate_f32(((uint64_t)x_mask) | ((uint64_t)(y_mask) << 32)); float32x2_t V1 = vcreate_f32(((uint64_t)z_mask) | ((uint64_t)(w_mask) << 32)); return vcombine_f32(V0, V1); #else return mask4f{ x_mask, y_mask, z_mask, w_mask }; #endif } RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE RTM_SIMD_CALL operator mask4i() const RTM_NO_EXCEPT { const uint32_t x_mask = x ? 0xFFFFFFFFU : 0; const uint32_t y_mask = y ? 0xFFFFFFFFU : 0; const uint32_t z_mask = z ? 0xFFFFFFFFU : 0; const uint32_t w_mask = w ? 0xFFFFFFFFU : 0; #if defined(RTM_SSE2_INTRINSICS) return _mm_set_epi32(w_mask, z_mask, y_mask, x_mask); #elif defined(RTM_NEON_INTRINSICS) float32x2_t V0 = vcreate_f32(((uint64_t)x_mask) | ((uint64_t)(y_mask) << 32)); float32x2_t V1 = vcreate_f32(((uint64_t)z_mask) | ((uint64_t)(w_mask) << 32)); return RTM_IMPL_MASK4i_SET(vcombine_f32(V0, V1)); #else return mask4i{ x_mask, y_mask, z_mask, w_mask }; #endif } bool x; bool y; bool z; bool w; }; } ////////////////////////////////////////////////////////////////////////// // Creates a mask4 from all 4 bool components. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE constexpr rtm_impl::mask4_bool_set RTM_SIMD_CALL mask_set(bool x, bool y, bool z, bool w) RTM_NO_EXCEPT { return rtm_impl::mask4_bool_set{ x, y, z, w }; } namespace rtm_impl { ////////////////////////////////////////////////////////////////////////// // This is a helper struct to allow a single consistent API between // various vector types when the semantics are identical but the return // type differs. Implicit coercion is used to return the desired value // at the call site. ////////////////////////////////////////////////////////////////////////// struct mask4_uint32_set { RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE RTM_SIMD_CALL operator mask4f() const RTM_NO_EXCEPT { #if defined(RTM_SSE2_INTRINSICS) return _mm_castsi128_ps(_mm_set_epi32(w, z, y, x)); #elif defined(RTM_NEON_INTRINSICS) float32x2_t V0 = vcreate_f32(((uint64_t)x) | ((uint64_t)(y) << 32)); float32x2_t V1 = vcreate_f32(((uint64_t)z) | ((uint64_t)(w) << 32)); return vcombine_f32(V0, V1); #else return mask4f{ x, y, z, w }; #endif } RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE RTM_SIMD_CALL operator mask4i() const RTM_NO_EXCEPT { #if defined(RTM_SSE2_INTRINSICS) return _mm_set_epi32(w, z, y, x); #elif defined(RTM_NEON_INTRINSICS) float32x2_t V0 = vcreate_f32(((uint64_t)x) | ((uint64_t)(y) << 32)); float32x2_t V1 = vcreate_f32(((uint64_t)z) | ((uint64_t)(w) << 32)); return RTM_IMPL_MASK4i_SET(vcombine_f32(V0, V1)); #else return mask4i{ x, y, z, w }; #endif } uint32_t x; uint32_t y; uint32_t z; uint32_t w; }; } ////////////////////////////////////////////////////////////////////////// // Creates a mask4 from 4 uint32 components. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE constexpr rtm_impl::mask4_uint32_set RTM_SIMD_CALL mask_set(uint32_t x, uint32_t y, uint32_t z, uint32_t w) RTM_NO_EXCEPT { return rtm_impl::mask4_uint32_set{ x, y, z, w }; } namespace rtm_impl { ////////////////////////////////////////////////////////////////////////// // This is a helper struct to allow a single consistent API between // various vector types when the semantics are identical but the return // type differs. Implicit coercion is used to return the desired value // at the call site. ////////////////////////////////////////////////////////////////////////// struct mask4_uint64_set { RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE RTM_SIMD_CALL operator mask4d() const RTM_NO_EXCEPT { #if defined(RTM_SSE2_INTRINSICS) ////////////////////////////////////////////////////////////////////////// // HACK ALERT! // VS2015, VS2017, and VS2019 crash when compiling with _mm_set_epi64x() here. // To work around this, we use alternative code. We assume that the high and low words // are identical in the mask, which should be true. // See: https://github.com/nfrechette/rtm/issues/84 ////////////////////////////////////////////////////////////////////////// #if defined(RTM_COMPILER_MSVC) && defined(_M_IX86) && !defined(NDEBUG) const uint32_t x_mask = x ? 0xFFFFFFFFU : 0; const uint32_t y_mask = y ? 0xFFFFFFFFU : 0; const uint32_t z_mask = z ? 0xFFFFFFFFU : 0; const uint32_t w_mask = w ? 0xFFFFFFFFU : 0; return mask4d{ _mm_castsi128_pd(_mm_set_epi32(y_mask, y_mask, x_mask, x_mask)), _mm_castsi128_pd(_mm_set_epi32(w_mask, w_mask, z_mask, z_mask)) }; #else return mask4d{ _mm_castsi128_pd(_mm_set_epi64x(y, x)), _mm_castsi128_pd(_mm_set_epi64x(w, z)) }; #endif #else return mask4d{ x, y, z, w }; #endif } RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE RTM_SIMD_CALL operator mask4q() const RTM_NO_EXCEPT { #if defined(RTM_SSE2_INTRINSICS) ////////////////////////////////////////////////////////////////////////// // HACK ALERT! // VS2015, VS2017, and VS2019 crash when compiling with _mm_set_epi64x() here. // To work around this, we use alternative code. We assume that the high and low words // are identical in the mask, which should be true. // See: https://github.com/nfrechette/rtm/issues/84 ////////////////////////////////////////////////////////////////////////// #if defined(RTM_COMPILER_MSVC) && defined(_M_IX86) && !defined(NDEBUG) const uint32_t x_mask = x ? 0xFFFFFFFFU : 0; const uint32_t y_mask = y ? 0xFFFFFFFFU : 0; const uint32_t z_mask = z ? 0xFFFFFFFFU : 0; const uint32_t w_mask = w ? 0xFFFFFFFFU : 0; return mask4q{ _mm_set_epi32(y_mask, y_mask, x_mask, x_mask), _mm_set_epi32(w_mask, w_mask, z_mask, z_mask) }; #else return mask4q{ _mm_set_epi64x(y, x), _mm_set_epi64x(w, z) }; #endif #else return mask4q{ x, y, z, w }; #endif } uint64_t x; uint64_t y; uint64_t z; uint64_t w; }; } ////////////////////////////////////////////////////////////////////////// // Creates a mask4 from 4 uint64 components. ////////////////////////////////////////////////////////////////////////// RTM_DISABLE_SECURITY_COOKIE_CHECK RTM_FORCE_INLINE constexpr rtm_impl::mask4_uint64_set RTM_SIMD_CALL mask_set(uint64_t x, uint64_t y, uint64_t z, uint64_t w) RTM_NO_EXCEPT { return rtm_impl::mask4_uint64_set{ x, y, z, w }; } } RTM_IMPL_FILE_PRAGMA_POP